网站地图
因数

因数,数学名词。

假如a*b=c(a、b、c都是整数),那么我们称a和b就是c的因数。需要注意的是,唯有被除数,除数,商皆为整数,余数为零时,此关系才成立。 反过来说,我们称c为a、b的倍数。在研究因数和倍数时,不考虑0。

在小学数学里,两个正整数相乘,那么这两个数都叫做积的因数,或称为约数。

事实上因数一般定义在整数上:设A为整数,B为非零整数,若存在整数Q,使得A=QB,则称B是A的因数,记作B|A。但是也有的作者不要求B≠0。

例如:2X6=12,2和6的积是12,因此2和6是12的因数。12是2的倍数,也是6的倍数。

3X(-9)=-27,3和-9都是-27的因数。-27是3和-9的倍数。

一般而言,整数A乘以整数B得到整数C,整数A与整数B都称做整数C的因数,反之,整数C为整数A的倍数,也为整数B的倍数。

整除:若整数a除以非零整数b,商为整数,且余数为零, 我们就说a能被b整除(或说b能整除a),记作b|a。

质数素数:恰好有两个正因数的自然数。(或定义为在大于1的自然数中,除了1和此整数自身外两个因数,无法被其他自然数整除的数)。

合数:除了1和它本身还有其它正因数。

1只有正因数1,所以它既不是质数也不是合数。

若a是b的因数,且a是质数,则称a是b的质因数。例如2,3,5均为30的质因数。6不是质数,所以不算。7不是30的因数,所以也不是质因数。

公因数只有1的两个非零自然数,叫做互质数。

1个非零自然数的正因数的个数是有限的,其中最小的是1,最大的是它本身。而一个非零自然数的倍数的个数是无限的。

所有不为零的整数都是0的因数。(还有争议)

2是最小的质数。

4是最小的合数。

定义:两个或多个整数公有的因数叫做它们的公因数。

两个或多个整数的公因数里最大的那一个叫做它们的最大公因数。

推论:1是任意个数的整数之公因数。

两个成倍数关系的非零自然数之间,小的那一个数就是这两个数的最大公因数。


相关文章推荐:
整数 | 被除数 | 除数 | | 余数 | 倍数 | 倍数 | 因数 | 数学 | 约数 | 公因数 | 最大公因数 | 小学数学 | 正整数 | | 约数 | 整数 | 整数 | 整数 | 整数 | | 倍数 | 倍数 | 整数 | 倍数 | 整数 | 余数 | 质数 | 素数 | 合数 | 质数 | 质因数 | 质因数 | 质数 | 质因数 | 互质数 | 自然数 | 正因数 | 自然数 | 倍数 | 质数 | 合数 | 整数 | 公因数 | 公因数 | 最大公因数 | 公因数 | 自然数 | 最大公因数 |
相关词汇词典