网站地图
分压力

道尔顿定律

P=P1+P2+……+Pn

混合气体均为理想气体的状态下, 各成分的分压力之比=对应气体的物质的量比,即上式可表示为

n=n1+n2+........+nn

需要注意的是,实际气体并不严格遵从道尔顿分压定律,在高压情况下尤其如此。当压力很高时, 分子所占的体积和分子之间的空隙具有可比性;同时,更短的分子间距离使得分子间作用力增强,从而会改变各组分的分压力。这两点在 道尔顿定律中并没有体现 。

道尔顿定律

P=P1+P2+……+Pn

混合气体均为理想气体的状态下, 各成分的分压力之比=对应气体的物质的量比,即上式可表示为

n=n1+n2+........+nn

需要注意的是,实际气体并不严格遵从道尔顿分压定律,在高压情况下尤其如此。当压力很高时, 分子所占的体积和分子之间的空隙具有可比性;同时,更短的分子间距离使得分子间作用力增强,从而会改变各组分的分压力。这两点在 道尔顿定律中并没有体现 。

进样系统、校准室和抽气系统等几部分组成。供气系统、进样系统共有相同的三路 , 图中只画出了其中一路。

抽气系统由机械泵 1, 分子泵 4 , 6 , 溅射离子泵 7 等组成。校准室由上球室 14, 下球室 10 ,超高真空冷规 13 和磁悬浮转子规 15 组成 ; 进样系统由角阀 16, 小孔 17, 针阀 20, 稳压室 21 ,磁悬浮转子规 19 组成 ; 供气系统由机械26 ,气瓶 27 , 电磁阀 23, 2 4, 减压阀 25组成 。

混合气体的分压力进行测量 , 在分压力准确测量的基础上对质谱计的灵敏度等参数进行校准。 以下主要介绍分压 力测量方法和质 谱计灵敏度的校准方法 。

动量传递系数 ; M 为某一气体的分子量 ; ( - k/ k )为转子转速的相对衰减率。 用式( 1)不能直接测量分压力 , 但经过分析 , 通过适当的转换 , 可以实现分压力的测量。对于磁悬浮转子规 , 式 ( 1 )成立的条件是在分子流状态下 ,即气体分子之间无碰撞 , 这样在混合气体条件下 , 每种气体成份与转子发生碰撞引起的转子转速衰减率是相互独立的。因此 , 在混合气体条件下 , 可以对每种气体成分引起的转子转速的相对衰减率进行线性迭加 , 只要让磁悬浮转子规的测量输出为 ( - k/ k ) , 就可方便地得到混合气体中气体成分的分压 力 .

2) 衰减压力的分子流动态进样法

如果校准压力在 10- 4~ 1 0- 6Pa范围内 , 可采用衰减压力的分子流动态进样法用上游室上所接的磁悬浮转子规 1 9测量。即关闭超高真空角阀 16 , 调节微调阀或稳压室中的压力 , 使上游室中的压力处于 10- 4~ 10- 1P a 范围内 , 利用磁悬浮转子规 19 的测量值 , 并经过计算得到校准室中的压力 。

若上游室中的压力为 p 1 , 限流小孔 17的分子流流导为 C1 , 限流小孔 12 的分子流 流导为C2 , 当气体达到动态平衡后 , 校准室中的压力 p2为

在分子流条件下 , 对 某一种气体 , C1 和 C2不变。 尽管 C1 和 C2 与气体的种类有关 , 但流导比 R= C1 / C2 的值与气体的种类无关。 因此 , 在分子流条件下 , R 为常数 , 只要以任何一种气体准确测定了 R , 就可以利用式 ( 2 ) 计算校准室中的压力 。

根据式 ( 2 ) , 在分子流条件下 , 有 R= C1 / C2= p 2 /p 1 。 因此 , 不必分别测定 C1 和 C2 , 只要准确测定 p 2 和 p 1 , 即可确定 R 。在该校准装置中 ,选择限流小孔 , 使 R 的值接近 1 0- 3, 这时可利用上游室上的磁悬浮转子规 19 和校准室上的磁悬浮转子规 15准确测定 R 。 调节气体量 , 使上游室中的压力为 10- 1P a, 则校准室中的压力为10- 4Pa, 均在磁悬浮转子规的精确测量范围内。用 Ar 、 N2 和 He 等气体实际测定 R , 经过多次反复测定 , 证明 R 的重复性优于 1 % 。

当准确测定 R 值后 , 就可用 R 值和上游室中气体的压力计算校准室中的压力 , 校准室中的压力比上游室中的压力衰减了三个数量级 ,因此可用此方法在 10- 4~ 1 0- 7Pa 范围内测量分压力。 校准装置设计有三路相同的独立进样系统 , 当同时向校准室引入三种不同气体时 , 可在校准室中建立起三种气体混合物的分压力 ,并进行压力测量 .


相关文章推荐: