网站地图
直觉主义逻辑

直觉主义逻辑构造性逻辑是最初由阿兰德海廷开发的为鲁伊兹布劳威尔的数学直觉主义计划提供形式基础的符号逻辑。这个系统保持跨越生成导出命题的变换的证实性而不是真理性。从实用的观点,也有使用直觉逻辑的强烈动机,因为它有存在性质,这使它还适合其他形式的数学构造主义。

1)语法

直觉逻辑的公式的语法类似于命题逻辑或一阶逻辑。但是直觉逻辑的连结词不像经典逻辑那样是可互定义的,因此它们的选择是重要的。在直觉命题逻辑中通常使用 →, ∧, ∨, ⊥ 作为基本连结词,把 ¬ 作为 ¬A = (A → ⊥)的简写处理。在直觉一阶逻辑中量词 , 都是需要的。

不同在于很多经典逻辑的重言式在直觉逻辑中不再是可证明的。例子不只包括排中律 P ∨ ¬P,还有皮尔士定律((PQ) → P) → P,甚至还有双重否定除去。在经典逻辑中,P → ¬¬P 和 ¬¬PP 二者都是定理。在直觉逻辑中,只有前者是定理: 双重否定可以介入但不能除去。

对很多经典有效重言式不是直觉逻辑的定理的观察导致了弱化经典逻辑的证明论的想法。

2)语义

建立在模态逻辑的语义的工作之上,索尔阿伦克里普克为直觉逻辑建立了另一套语义,叫做克里普克语义关系语义


相关文章推荐:
数学直觉主义 | 符号逻辑 | 符号逻辑 | 语法 | 命题逻辑 | 一阶逻辑 | 经典逻辑 | 重言式 | 排中律 | 双重否定除去 | 模态逻辑 | 索尔阿伦克里普克 |
相关词汇词典