网站地图

金属铯是一种金黄色,熔点低的活泼金属,在空气中极易被氧化,能与水剧烈反应生成氢气且爆炸。铯在自然界没有单质形态,铯元素以盐的形式极少的分布于陆地和海洋中。铯也是制造真空件器、光电管等的重要材料。放射性核素Cs-137是日本福岛第一核电站泄露出的放射性污染中的一种。

铯是已知元素中(包括放射性元素)金属性最强的(注意不是金属活动性,活动性最强的是锂)。 [1]

铯最终被基尔霍夫教授和本生于1860年在德国的海德堡被发现。他们检测了来自Durkheim的矿物质水,并且在光谱中观察到了他们不能认出的线,这意味着一个新的元素的出现。他们从这个来源生产出了约7克氯化铯,但没能生产出这种新金属自身的样本。第一个成功制出金属铯的这个荣誉归属于波恩大学的考尔 希欧多尔赛特伯格(Carl Theodor Setterberg)教授,他由电解熔融的氰化铯(CsCN)获取了它。 [2-3]

Durkheim的矿物质水中含有丰富的铯化合物,所以可以从Durkheim的矿物质水提取。 [1]

铯元素一般分布在含矿物质较多的水中。 [1]

铯位于第六周期的碱金属(IA)族,是带金黄色的碱金属,非常柔软(它的莫氏硬度是所有元素中最低的),具有延展性。金属铯是没有放射性的,但是金属铯属于危险化学品,属遇湿易燃和自燃物品。使用时应小心。 [5]

天然存在的铯133是一种稳定同位素,而其他铯同位素则属于放射性。 [6]

密度

熔点

28.40℃(83.1),接近室温 [5]

沸点

678.4℃ [1]

同位素Cs-137:

铯的生物行为与钾相似,食用了含铯137的生物可溶化合物24小时后,铯137可被人体充分吸收并结合在细胞内,造成内照射。 [4]

铯-137可作为γ辐射源,用于辐射育种、辐照储存食品、医疗器械的杀菌、癌症的治疗以及工业设备的γ探伤等。由于铯源的半衰期较长及其易造成扩散的弱点,故铯-137源已渐被钴-60源所取代。 [5]

2011年3月29日,在安徽省、广东省、广西壮族自治区和宁夏回族自治区的监测点气溶胶取样中还检测到了极微量的人工放射性核素铯-137和铯-134,其浓度均在10-5贝克/立方米量级及以下。环境中铯-137进入人体后易被吸收,均匀分布于全身;由于铯-137能释放γ射线,很容易在体外测出。进入体内的放射性铯主要滞留在全身软组织中,尤其是肌肉中,在骨和脂肪中浓度较低;较大量放射性铯摄入体内后可引起急、慢性损伤。 [3]

其放射性及简要特性:

核素

化学

符号

原子

序数

主要放射性

同位素

半衰期

来源

毒性

Cs

55

137Cs

30.0年

人工

中毒 [7]

铯的化学性质极为活泼,铯在空气中生成一层灰蓝色的氧化铯,不到一分钟就可以自燃起来,发出深紫红色的火焰,生成很复杂的铯的氧化物。 [1] [5]

铯在碱金属中是最活泼的,能和氧发生剧烈反应,生成多种铯氧化物。在潮湿空气中,氧化的热量足以使铯熔化并燃烧。铯不与氮反应,但在高温下能与氢化合,生成相当稳定的氢化物。铯能与水发生剧烈的反应,如果把铯放进盛有水的水槽中,马上就会发生爆炸。甚至和温度低到-116℃的冰均可发生猛烈反应产生氢气、氢氧化铯,生成的氢氧化铯是无放射性的氢氧化碱中碱性最强的。与卤素也可生成稳定的卤化物,这是由于它的离子半径大所带来的特点。铯和有机物也会发生同其他碱金属相类似的反应,但它比较活泼。 [1]

铯盐跟钾盐、钠盐一样溶于所有盐溶液中。但是高氯酸盐不溶。 [1]

碘化铯与三碘化铋反应能生成难溶的亮红色复盐,此反应用来定性和定量测定铯;铯的火焰呈比钾深的紫红色,可用来检验铯。 [1] [5]

化合物:铯在空气中氧化不仅仅得到氧化铯、过氧化铯,还有超氧化铯、臭氧化铯等复杂的非整比化合物产生。

Cs的盐通常是无色的,除非阴离子有颜色(如高锰酸铯是紫色的)。 许多简单的盐具有潮解性,但比更轻的其他碱金属弱。铯的乙酸盐、碳酸盐、卤化物、氧化物、硝酸盐和硫酸盐可溶于水。复盐通常溶解度较小,硫酸铝铯溶解度较小的性质常用来从矿石中提纯铯。与锑(例如CsSbCl4)、铋、镉、铜、铁和铅形成的复盐通常溶解度很小。

氢氧化铯(CsOH)是一种具有强烈吸水性的强碱。它能迅速腐蚀半导体材料(例如硅)的表面。 过去化学家曾认为CsOH是“最强的碱”,但是许多化合物的碱性(质子碱性)远比CsOH强,例如正丁基锂,氢化铯和氨基钠。 [5]

铯可以用电解法和热还原法制备。但是由于对电极有强腐蚀性,工业上一般不用电解法。所以工业上是由氯化铯高温用金属钙还原制取金属铯。 [7]

长寿命的铯137是铀-235的裂变产物。半衰期30.17年,可辐射β射线和γ射线,用作β和γ辐射源,用于工农业和医疗。随着核燃料放射性废物储放的时间,其辐射的γ射线比例增加;是储存的主要对象。 [4]

为了探索宇宙,必须有一种崭新的、飞行速度极快的交通工具。一般的火箭、飞船都达不到这样的速度,最多只能冲出地月系;只有每小时能飞行十几万公里的“离子火箭”才能满足要求。 [3] [5]

铯原子的最外层电子极不稳定,很容易被激发放射出来,变成为带正电的铯离子,所以是宇宙航行离子火箭发动机理想的“燃料”。铯离子火箭的工作原理是这样的:发动机开动后,产生大量的铯蒸气,铯蒸气经过离化器的“加工”,变成了带正电的铯离子,接着在磁场的作用下加速到每秒一百五十公里,从喷管喷射出去,同时给离子火箭以强大的推动力,把火箭高度推向前进。 [3] [5]

计算表明,用这种铯离子作宇宙火箭的推进剂,单位重量产生的推力要比使用的液体或固体燃料高出上百倍。这种铯离子火箭可以在宇宙太空遨游一二年甚至更久! [3] [5]

铯原子的最外层的电子绕着原子核旋转的速度,总是极其精确地在几十亿分之一秒的时间内转完一圈,稳定性比地球绕轴自转高得多。利用铯原子的这个特点,人们制成了一种新型的钟铯原子钟,规定一秒就是铯原子“振动”9192631770次(即相当于铯原子的两个超精细电子迁跃9192631770次)所需要的时间。这就是“秒”的最新定义。 [3] [5]

利用铯原子钟,人们可以十分精确地测量出十亿分之一秒的时间,精确度和稳定性远远地超过世界上以前有过的任何一种表,也超过了许多年来一直以地球自转作基准的天文时间。有了像铯原子钟这样一类的钟表,人类就有可能从事更为精细的科学研究和生产实践,比如对原子弹和氢弹的爆炸、火箭和导弹的发射以及宇宙航行等等,实行高度精确的控制,当然也可以用于远程飞行和航海。用铯作成的原子钟,可以精确的测出十亿分之一秒的一刹那,它连续走上三十万年,误差也不超过1s,精确度相当高.,另外,铯在医学上、导弹上、宇宙飞船上及各种高科技行业中都有广泛应用。 [3] [5] [8]


相关文章推荐:
氢气 | 真空 | | 基尔霍夫 | 本生 | 海德堡 | 氯化铯 | 氰化铯 | 碱金属 | 莫氏硬度 | 延展性 | 广西壮族自治区 | 化学性质 | 氧化铯 | 氢化物 | 氢氧化铯 | 卤素 | 卤化物 | 离子半径 | 钾盐 | 盐溶液 | 高氯酸盐 | 潮解 | 乙酸盐 | 卤化物 | 硝酸盐 | 硫酸盐 | 复盐 | 硫酸铝 | | | | 氢氧化铯 | | 半导体材料 | | 正丁基锂 | 氢化铯 | 氨基钠 | 电解法 | 离子火箭 | 火箭发动机 | 宇宙火箭 | 固体燃料 | 原子核 | 原子钟 | 宇宙飞船 |
相关词汇词典