网站地图
β氧化

β氧化是代谢氧化的一个长链脂肪酸通过连续周期的反应在每一步的脂肪酸是缩短形成含两个原子碎片移除乙酰辅酶a。脂肪酸β氧化过程可概括为活化、转移、β氧化及最后经三羧酸循环被彻底氧化生成CO2和HO并释放能量等。

.

脂肪酸是由一条长的烃基上附加一个羧基的化合物,溶解度一般不大,主要来源于脂肪在人体消化道内的水解。

碳原子个数为偶数的脂肪酸进入人体后,其羧基在细胞质基质中与乙酰辅酶A(乙酰CoA)结合,之后循环往复地被催化脱去乙基,产生新的乙酰CoA,直至碳原子全部脱去。

新产生的乙酰CoA大多进入线粒体基质中脱羧脱氢,进而被柠檬酸合成酶催化产生柠檬酸,参与三羧酸循环(又名Kreb循环或柠檬酸循环)。

(1)脂肪酸的活化:脂肪酸的氧化首先须被活化,在ATP、CoA-SH、Mg2+存在下,由位于内质网及线粒体外膜的脂酰CoA合成酶,催化生成脂酰CoA.活化的脂肪酸不仅为一高能化合物,而且水溶性增强,因此提高了代谢活性。

(2)脂酰CoA的转移:是在胞液中进行的,而催化脂肪酸氧化的酶系又存在于线粒体基质内,故活化的脂酰CoA必须先进入线粒体才能氧化,但已知长链脂酰辅酶A是不能直接透过线粒体内膜的,因此活化的脂酰CoA要借助肉碱(camitine),即L-3羟-4-三甲基铵丁酸,而被转运入线粒体内,在线粒体内膜的外侧及内侧分别有肉碱脂酰转移酶I和酶Ⅱ,两者为同工酶。位于内膜外侧的酶Ⅰ,促进脂酰CoA转化为脂酰肉碱,后者可借助线粒体内膜上的转位酶(或载体),转运到内膜内侧,然后,在酶Ⅱ催化下脂酰肉碱释放肉碱,后又转变为脂酰CoA.这样原本位于胞液的脂酰CoA穿过线粒体内膜进入基质而被氧化分解。一般10个碳原子以下的活化脂肪酸不需经此途径转运,而直接通过线粒体内膜进行氧化。

(3)脂酰CoA的β氧化:脂酰CoA进入线粒体基质后,在脂肪酸β氧化酶系催化下,进行脱氢、加水,再脱氢及硫解4步连续反应,最后使脂酰基断裂生成一分子乙酰CoA和一分子比原来少了两个碳原子的脂酰CoA.因反应均在脂酰CoA烃链的α,β碳原子间进行,最后β碳被氧化成酰基,故称为β氧化。

a 脱氢:脂酰CoA在脂酰基CoA脱氢酶的催化下,其烃链的α、β位碳上各脱去一个氢原子,生成α、β烯脂酰CoA(trans-y-enoylCoA),脱下的两个氢原子由该酶的辅酶FAD接受生成FAD.2H.后者经电子传递链传递给氧而生成水,同时伴有1.5分子ATP的生成。

b 加水:α、β烯脂酰CoA在烯酰CoA水合酶的催化下,加水生成β-羟脂酰CoA(βhydroxyacylCoA)。

c 再脱氢:β-羟脂酰CoA在β-羟脂酰CoA脱氢酶(L-βhydroxyacylCoAdehydrogenase)催化下,脱去β碳上的2个氢原子生成β-酮脂酰CoA,脱下的氢由该酶的辅酶NAD+接受,生成NADH+H+.后者经电子传递链氧化生成水及2.5分子ATP.

d 硫解:β-酮脂酰CoA在β-酮脂酰CoA在硫解酶(β-ketoacylCoAthiolase)催化下,加一分子CoASH使碳链断裂,产生乙酰CoA和一个比原来少两个碳原子的脂酰CoA.以上4步反应均可逆行,但全过程趋向分解,尚无明确的调控位点。

1分子软脂酸含16个碳原子,靠7次β氧化生成7分子NADH+H+,7分子FADH2,8分子乙酰CoA,共生成:7×1.5+7×2.5+8×10=108分子ATP,而所有脂肪酸活化均需耗去2分子ATP.故1分子软脂酸彻底氧化净生成:7×1.5+7×2.5+8×10-2=106分子ATP。

β氧化作用的提出是在十九世纪初,Franz Knoop 在此方面作出了关键性的贡献。他将末端甲基上连有苯环的脂肪酸喂饲狗,然后检测狗尿中的产物。结果发现,食用含偶数碳的脂肪酸的狗的尿中有苯乙酸的衍生物苯乙尿酸,而食用含奇数碳的脂肪酸的狗的尿中有苯甲酸的衍生物马尿酸。 Knoop由此推测无论脂肪酸链的长短,脂肪酸的降解总是每次水解下两个碳原子。据此,Knoop 提出脂肪酸的氧化发生在β-碳原子上,而后Ca与Cb之间的键发生断裂,从而产生二碳单位,此二碳单位Knoop推测是乙酸。

以后的实验证明Knoop推测的准确性,由此提出了脂肪酸的β-氧化作用。

β-氧化作用是指脂肪酸在β-碳原子上进行氧化,然后α-碳原子和β-碳原子之间键发生断裂。每进行一次β-氧化作用,分解出一个二碳片段,生成较原来少两个碳原子的脂肪酸。

后来对CoA的发现以及分离和提纯了参与脂肪酸氧化的各种酶,更弄清了其氧化机制的细节。E.P.Kennedy 和 A.L.Lehninger(1949)指出此氧化系统存在于线粒体中,后来D.E.Green及F.Lynen(1953)各自独立地从线粒体的丙酮粉末提取出可溶性酶,成功地分离出β氧化各个阶段的酶,明确了脂肪β氧化如图所示,按下述过程进行。(1)由脂肪酸活化酶使脂肪酸与 CoA结合,(2)由乙酰CoA脱氢酶的作用使乙酰CoA脱氢,(3)由烯酰CoA水合酶的作用使烯酰CoA加水,(4)由β-羟基乙酰 CoA脱氢酶的作用使β-羟基乙酰 CoA脱氢,(5)由β-酮酰CoA硫解酶的作用使β酮酰CoA裂解。经以上五个阶段逐次游离出来的乙 酰CoA(C2片段)经三羧酸循环而氧化。其能量收支为每分子棕榈酸(C16)产生130分子ATP。不饱和脂肪酸的氧化除需上述各种酶之外,还需要催化3-顺-烯酰CoA转变成2-反式的3-顺, 2-反-烯酰CoA异构酶和催化D(一)-3-羟式成L(+)-3-羟式的3-羟乙酰CoA-3-表异构酶参与。由奇数C原子脂肪酸分解产生的丙酰CoA,通过羧化及异构化而转变成琥珀酰CoA再进一步变化。

定义:脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β碳原子被氧化成羧基,生成含有两个碳原子的乙酰辅酶A,和较原来少两个碳原子的脂肪酸


相关文章推荐:
乙酰辅酶a | 烃基 | 羧基 | 水解 | 细胞质基质 | 乙酰辅酶A | 乙酰CoA | 线粒体基质 | 脱羧 | 脱氢 | 柠檬酸合成酶 | ATP | 内质网 | 线粒体外膜 | 高能化合物 | 脂肪酸氧化 | 线粒体基质 | 线粒体 | 线粒体内膜 | 氧化分解 | 线粒体内膜 | 线粒体基质 | 脱氢 | 连续反应 | 乙酰CoA | 脱氢酶 | 电子传递链 | ATP | 脱氢 | 电子传递链 | 碳链 | 乙酰CoA | 软脂酸 | FADH2 | ATP | ATP | 苯环 | 苯乙酸 | 苯乙尿酸 | 苯甲酸 | 马尿酸 | 水解 | β-碳原子 | β-氧化作用 | α-碳原子 | 脂肪酸氧化 | 线粒体 | 丙酮 | 乙酰CoA | 脱氢酶 | 水合酶 | 羟基 | 脱氢 | 硫解酶 | 能量收支 | 棕榈酸 | ATP | 奇数 | α碳原子 | 羧基 | 乙酰辅酶A |
相关词汇词典