网站地图
非视距

非视距最直接的解释是,通信的两点视线受阻,彼此看不到对方,菲涅尔区大于50%的范围被阻挡 。

LOS( line of sight) 和 NLOS(not line of sight)从名称上而言,是指的是无线信号的视线传输和非视线传输。简单的使用这两个名词,显然无法将实际上的多样的无线传播环境加以区分,比如水声,比如回波信道等。

而在实际的移动通信的网络规划中,大部分环境都可以分成LOS 和 NLOS。而且,各个标准的接收检测技术在这两种环境中又可以分别做不同的处理 [1]

我们通常将无线通信系统的传播条件分成视距(LOS)和非视距(NLOS)两种环境。视距条件下,无线信号无遮挡地在发信端与接收端之间”直线“传播,这要求在第一菲涅尔区(First Fresnel zone)内没有对无线电波造成遮挡的物体,如果条件不满足,信号强度就会明显下降。菲涅尔区的大小取决于无线电波的频率及收发信机间距离。

从发射机到接收机传播路径上,有直射波和反射波,反射波的电场方向正好与原来相反,相位相差180度。如果天线高度较低且距离较远时,直射波路径与反射波路径差较小,则反射波将会产生破坏作用。 实际传播环境中,第一菲涅尔区定义为包含一些反射点的椭圆体,在这些反射点上反射波和直射波的路径差小于半个波长。

从电磁波在空间的传播来讲,第一菲涅尔区是满足直射波和反射波某种特性的波,是从接收区域可以接收到如何的电磁波角度出发的。

视距通信应保证第一菲涅尔区0.6倍焦距内无障碍物。

而在有障碍物的情况下,无线信号只能通过反射,散射和衍射方式到达接收端,我们称之为非视距通信。此时的无线信号通过多种途径被接收,而多径效应会带来时延不同步、信号衰减、极化改变、链路不稳定等一系列问题。

多径信号传播过程中会引起信号极化角的改变。而另一方面基站常使用不同极化方式进行频率复用,因此多径效应引起的极化角改变,就会产生问题。

如何把多径传播的不利因素变化有利因素,是实现非视距通信的关键。一种简单的方法就是提高发射功率,以使信号穿透障碍物,变非视距传播为准视距传播,但这不是真正的解决之道,只能一定程度的解决问题。无线覆盖总是要受制于地理环境、空中损耗、链路预算等条件。某些情况要求无线传播条件一定是非视距的,如规划的要求、高度的限制,不允许天线安装在视距范围内。小区连续覆盖时,频率复用要求很严格,降低天线高度可有效减少相邻小区的同频干扰。所以基站与终端经常是在非视距条件下通信。而视距通信环境中天线过高、过密反而会带来问题。

非视距通信同样可以降低网络建设成本。例如:无线规划仿真更加精确,勘察选址的工作量降低,CPE设备的安装难度也相应减少。

为解决非视距通信中的问题,WiMax采用了以下一些主要技术:

OFDM调制;子信道化;方向性天线;发射与接收分集;自适应调制;多重纠错技术;功率控制 [2] 。(注意:OFDM 系统的子带上的频率选择性增益,在Multi-pathchannel下才能成立)


相关文章推荐:
信号 | 视距 | 电磁波 | 小区 | WiMax |
相关词汇词典