网站地图
代数基本定理(数学定理)

数学基本定理:任何复系数一元n次多项式 方程在复数域上至少有一根(n≥1),由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。代数基本定理在代数乃至整个数学中起着基础作用。 据说,关于代数学基本定理的证明,现有200多种证法。

代数学基本定理说明,任何复系数一元n次多项式方程在复数域上至少有一根。

由此推出,n次复系数多项式方程在复数域内有且只有n个根(重根按重数计算)。

有时这个定理表述为:任何一个非零的一元n次复系数多项式,都正好有n个复数根。这似乎是一个更强的命题,但实际上是“至少有一个根”的直接结果,因为不断把多项式除以它的线性因子,即可从有一个根推出有n个根。

尽管这个定理被命名为“代数基本定理”,但它还没有纯粹的代数证明,许多数学家都相信这种证明不存在。另外,它也不是最基本的代数定理;因为在那个时候,代数基本上就是关于解实系数或复系数多项式方程,所以才被命名为代数基本定理。

代数基本定理在代数乃至整个数学中起着基础作用。 最早该定理由德国数学家罗特于1608年提出。 [1] 据说,关于代数学基本定理的证明,现有200多种证法。 迄今为止,该定理尚无纯代数方法的证明。大数学家 J.P. 塞尔 曾经指出:代数基本定理的所有证明本质上都是拓扑的。 美国数学家John Willard Milnor在数学名著《从微分观点看拓扑》一书中给了一个几何直观的证明,但是其中用到了和临界点测度有关的sard定理。 复变函数论中,对代数基本定理的证明是相当优美的,其中用到了很多经典的复变函数的理论结果。

该定理的第一个证明是法国数学家达朗贝尔给出的,但证明不完整。接着,欧拉也给出了一个证明,但也有缺陷,拉格朗日于1772年又重新证明了该定理,后经高斯分析,证明仍然很不严格的。

代数基本定理的第一个严格证明通常认为是高斯给出的(1799年在哥廷根大学的博士论文),基本思想如下:

这里

高斯后来又给出了另外三个证法,其中第四个证法是他71岁公布的,并且在这个证明中他允许多项式的系数是复数 [2]

所有的证明都包含了一些数学分析,至少是实数或复数函数的连续性概念。有些证明也用到了可微函数,甚至是解析函数。

定理的某些证明仅仅证明了任何实系数多项式都有复数根。这足以推出定理的一般形式,这是因为,给定复系数多项式p(z),以下的多项式

就是一个实系数多项式,如果zq(z)的根,那么z或它的共轭复数就是p(z)的根。

许多非代数证明都用到了“增长引理”:当|z|足够大时,首系数为1的n次多项式函数p(z)的表现如同z。一个更确切的表述是:存在某个正实数R,使得当|z| > R时,就有:

证明一

寻找一个中心为原点,半径为r的闭圆盘D,使得当|z| ≥ r时,就有|p(z)| > |p(0)|。因此,|p(z)|在D内的最小值(一定存在,因为D是紧致的),是在D的内部的某个点z0取得,但不能在边界上取得。于是,根据最小模原理,p(z0) = 0。也就是说,z0是p(z)的一个零点(根)。

证明二

由于在D之外,有|p(z)| > |p(0)|,因此在整个复平面上,|p(z)|的最小值在z0取得。如果|p(z0)| > 0,那么1/p在整个复平面上是有界的全纯函数,这是因为对于每一个复数z,都有|1/p(z)| ≤ |1/p(z0)|。利用刘维尔定理(有界的整函数一定是常数),可知1/p是常数,因此p是常数。于是得出矛盾,所以p(z0) = 0。

证明三

这个证明用到了辐角原理。设R为足够大的正实数,使得p(z)的每一个根的绝对值都小于R;这个数一定存在,因为n次多项式函数最多有n个根。对于每一个r > R,考虑以下的数:

其中c(r)是中心为0,半径为r的逆时针方向的圆;于是辐角原理表明,这个数是p(z)在中心为0、半径为r的开圆盘内的零点的数目N,由于r > R,所以它也是p(z)的零点的总数目。另一方面,n/z沿着c(r)的积分除以2πi,等于n。但这两个数的差为:

被积分的有理表达式中的分子,次数最多是n 1,而分母的次数是n + 1。因此,当r趋于+∞时,以上的数趋于0。但这个数也等于N n,因此有N = n

证明四

这个证明结合了线性代数和柯西积分定理。为了证明每一个n > 0次复系数多项式都有一个根,只需证明每一个方块矩阵都有一个复数特征值。证明用到了反证法。

A为大小n > 0的方块矩阵,并设In为相同大小的单位矩阵。假设A没有特征值。考虑预解函数

它在复平面上是亚纯函数,它的值位于矩阵的向量空间内。A的特征值正好是R(z)的极点。根据假设,A没有特征值,因此函数R(z)是整函数,根据柯西积分定理可知:

另一方面,把R(z)展开为几何级数,可得:

这个公式在半径为||A||的闭圆盘的外部(A的算子范数)成立。设r > ||A||。那么:

(仅当k = 0时,积分才不等于零)。于是得出矛盾,因此A一定有一个特征值。

可推出如果a

对于另外一个用到反证法的拓扑学证明,假设p(z)没有根。选择一个足够大的正数R,使得对于|z| = Rp(z)的第一项z大于所有其它的项的和;也就是说,|z| > |an 1z + + a0|。当z依逆时针方向绕过方程为|z| = R的圆一次时,p(z),像z那样,依逆时针方向绕过零n次。在另外一个极端,|z| = 0时,“曲线” p(z)仅仅是一个(非零的)点p(0),它的卷绕数显然是0。如果z所经过的回路在这两个极端中被连续变形,那么p(z)的路径也连续变形。我们可以把这个变形记为