网站地图
积分方程

积分方程是含有对未知函数的积分运算的方程,与微分方程相对。许多数学物理问题需通过积分方程或微分方程求解。积分方程是近代数学的一个重要分支。数学、自然科学和工程技术领域中的许多问题都可以归结为积分方程问题。正是因为这种双向联系和深入的特点,积分方程论得到了迅速地发展,成为包括众多研究方向的数学分支。

积分方程理论的发展,始终与数学物理问题的研究紧密相联,它在工程、力学等方面有着极其广泛的应用。通常认为,最早自觉应用积分方程并求出解的是阿贝尔(Abel),他在1823年研究质点力学问题时引出阿贝尔方程。此前,拉普拉斯(Laplace)於1782年在数学物理中研究拉普拉斯变换的逆变换以及傅里叶(Fourier)於1811年研究傅里叶变换的反演问题实际上都是解第一类积分方程。随着计算技术的发展,作为工程计算的重要基础之一,积分方程进一步得到了广泛而有效地应用。如今,“物理问题变得越来越复杂,积分方程变得越来越有用”。

积分方程与数学的其他分支,例如,微分方程、泛函分析、复分析、计算数学、位势理论和随机分析等都有着紧密而重要地联系。甚至它的形成和发展是很多重要数学思想和概念的最初来源和模型。例如,对泛函分析中平方可积函数、平均收敛、算子等的形成,对一般线性算子理论的创立,以至於对整个泛函分析的形成都起着重要的推动作用。积分方程论中许多思想和方法,例如,关於第二种弗雷德霍姆(Fredholm)积分方程的弗雷德霍姆理论和奇异积分方程的诺特(Noether)理论以及逐次逼近方法,本身就是数学中经典而优美的理论和方法之一。

积分方程即为关于未知函数Φ (x) 的积分方程。

许多微分方程的求解问题可以归结为积分方程的 求解问题。积分方程论主要研究积分方程解的存在 性、唯一性、求解方法以及关于它的特征值和特征函 数的理论。其具体研究内容分为如下几个方向:①揭 示新的积分方程类,其成立线性代数方程组的基本定 理及弗雷德霍姆关于特征值的分布定理;②与正交分 解和对称核相关的理论;③与经典的弗雷德霍姆定理 不成立的线性积分方程的问题;④与物理、力学、工 程技术相关的非线性方程,特别是哈默斯坦 (Hammerstein) 方程;⑤介于概率论与积分方程之间 的边缘学科随机积分方程; 6各类积分微分方 程; 各类积分方程的数值解法。 [1]

积分号下含有未知函数的方程。其中未知函数以线性形式出现的,称为线性积分方程;否则称为非线性积分方程。积分方程起源于物理问题。牛顿第二运动定律的出现,促进了微分方程理论的迅速发展,然而对积分方程理论发展的影响却非如此。1823年,N.H.阿贝尔在研究地球引力场中的一个质点下落轨迹问题时提出的一个方程,后人称之为阿贝尔方程,是历史上出现最早的积分方程,但是在较长的时期未引起人们的注意。“积分方程”一词是 P.du B.雷蒙德于1888年首先提出的。19世纪的最后两年,瑞典数学家(E.)I.弗雷德霍姆和意大利数学家V.沃尔泰拉开创了研究线性积分方程理论的先河。从此,积分方程理论逐渐发展成为数学的一个分支。 1899年,弗雷德霍姆在给他的老师(M.)G.米塔-列夫勒的信中,提出如下的方程

,  (1)

式中φx)是未知函数;λ是参数,Kxy)是在区域0 ≤xy≤1上连续的已知函数;ψ(x)是在区间0≤x≤1上连续的已知函数。并认为方程(1)的解可表为关于λ的两个整函数之商。1900年,弗雷德霍姆在其论文中把(1)称为“积分方程”, 并初次建立了Kx,y)的行列式D(λ)和Dx,y,λ),证明了它们都是λ的整函数, 以及当λD(λ)的一个零点时, 则(1)的齐次方程φ

有不恒等于零的解。1903年,他又指出,若行列式D(1)≠0,则有一个且只有一个函数φ(x)满足方程(1)(λ=1),此时φ(x)可表为

从此,积分方程理论的发展进入了一个新的时期。以下形式的积分方程

, (2)

, (4)

分别称为第一种、第二种、第三种弗雷德霍姆积分方程,其中K(x,y)是在区域αxyb上连续的已知函数,称为方程的核;A(x)、ψ(x)都是在区间αxb上连续的已知函数,φ(x)是未知函数,λ是参数。 第一、二种弗雷德霍姆积分方程是第三种弗雷德霍姆积分方程的特殊情形。但是,第一种方程与第二种方程却有本质上的区别。与弗雷德霍姆几乎同时,沃尔泰拉研究了如下形式的积分方程

(5)

, (6)

, (7)

分别称为第一种、第二种、第三种沃尔泰拉积分方程,式中λφ(x)、ψ(x)和A(x)如前所述,K(x,y)是定义在三角形区域αyxb上的已知连续函数。弗雷德霍姆积分方程中的核K(x,y)当x<y时为零,就是沃尔泰拉积分方程。因此沃尔泰拉积分方程是弗雷德霍姆积分方程的特殊情形。但是这两类方程的本质是不同的。例如,第二种沃尔泰拉积分方程对于一切λ值总可用迭代法求解,而第二种弗雷德霍姆积分方程却出现了特征值问题;又如,第一种沃尔泰拉积分方程在一定条件下可以化为等价的某个第二种沃尔泰拉积分方程,而第一种弗雷德霍姆积分方程的讨论却困难得多。

弗雷德霍姆积分方程和沃尔泰拉积分方程的理论可以推广到多个未知函数的方程组的情形。这时只需要把φ(x)视为未知函数向量φ(x)=(φ1(x),φ2(x),…,φn(x)),K(x,y)看作n阶方阵(Kij(x,y)),i,j=1,2,…,n,ψ(x)=(ψ1(x),ψ2(x),…,ψn(x))看作已知函数向量。

D.希尔伯特和E.施密特对第二种弗雷德霍姆积分方程做了重要的工作,特别是关于对称核积分方程的特征值存在性,对称核关于特征函数序列的展开,以及希尔伯特 -施密特展开定理等。至于第一种弗雷德霍姆积分方程,早在1828年就为G.格林在研究位势理论以解决拉普拉斯方程的狄利克雷问题时所导出。格林当时还指出,关于这类方程没有一般的理论。20世纪初,E.施密特得到了方程(2)有解的必要条件。其后(C.-)&Eacute;.皮卡指出,该条件在核K(x,y)的特征函数序列是完备时也是充分的。但是,这一结果并没有提供一个一般的方便解法。第一种弗雷德霍姆积分方程的系统理论,尚未建立。

积分方程的核常是非连续的。例如,在一维空间,核K(x,y)是具有如下形式:

,式中0<α<1,H(x,y)是有界函数。这样的核称为弱奇性核,相应的方程称为弱奇性方程。可以证明,对弱奇性核施行如下运算:

pq都是正整数,K(1)(x,y)K(x,y),经m 次后,只要

,就得到一个有界核K(m)(x,y),而弱奇性消失了。由此可以证明,具有弱奇性核的积分方程同样具备第二种弗雷德霍姆积分方程的一切性质。对于n维空间的积分方程,也可以建立相应的结论。 奇异积分方程是与弗雷德霍姆积分方程有本质区别的一类方程。常见的奇异积分方程有两种:一种是核具有主值意义的奇性,例如柯西核;一种是积分区域为无穷的积分方程,例如维纳-霍普夫方程。 前一种奇异积分方程的理论是在弗雷德霍姆积分方程理论建立后的几年中产生的。希尔伯特在研究解析函数的边值问题中发现了这种奇异积分方程。几乎同时,(J.-)H.庞加莱在研究潮汐现象时,也发现了它。他们的工作为这种方程奠定了理论基础。这种奇异积分方程的一般形式为

式中l是平面上光滑闭围道,系数A(t)、K(t,τ)和ψ(t)都是给定的在l上按赫尔德意义连续的函数。方程中的积分在通常意义下是发散的,但在一定假设下,其柯西主值存在。这样的方程称为具有柯西核的奇异积分方程。此外,如下具有希尔伯特核的方程 也是一种主值意义下的奇异积分方程。对于这种奇异积分方程的研究成果及应用,苏联数学家Η.И.穆斯赫利什维利于1946年发表的专著《奇异积分方程》作了系统的总结。 后一种奇异积分方程的重要例子是维纳-霍普夫方程。它是20世纪20年代初在大气辐射传输问题的研究中首先得到的,在许多实际问题中有重要的应用。 相应于弗雷德霍姆定理,对于上述两种奇异积分方程有诺特定理(此诺特为著名的诺特阿姨的弟弟,见奇异积分方程)。近年来,非线性积分方程的研究,有了很快的发展。例如哈默斯坦型积分方程,即如下形式的非线性积分方程 [2]

式中K(x,y)、?(y,u)都是已知函数,?(y,u)关于u是非线性的。自H.哈默斯坦于1930年提出以来,研究者不乏其人,而且已得到不少有意义的结果。对于非线性奇异积分方程也有不少结果,但是直到现在,对于一般的非线性积分方程还没有系统的理论,即使是可解性的讨论也很困难。

自抽象空间这个概念创立以来,如希尔伯特空间、巴拿赫空间以及算子理论的建立,使古典的积分方程以崭新的面貌出现。例如,把积分方程(3)中出现的函数看作是巴拿赫空间X的元素,原来的积分运算以算子T代替,于是方程(3)就可写为

(8)

这里T是巴拿赫空间X中的一个全连续算子,ψX中一个已知元素,而φX中的未知元素。方程(8)的齐次方程φ-λTφ=0,若对于某些λ值有不等于零元素的解,则称这些λ值为算子T的点谱, 相应的元素称为特征元素。对于方程(8)也有在巴拿赫空间X中类似的弗雷德霍姆定理。算子T的谱分解是重要的研究课题,J.冯诺伊曼在这方面有丰硕的研究成果。 积分方程有广泛的应用。微分方程某些定解问题的求解可归结为求解积分方程。例如,为求解常微分方程初值问题,y(x0)=y0,y′(x0)=y1,只要在微分方程两端积分两次,并交换积分次序和利用初始条件,就得到与之等价的沃尔泰拉积分方程

类似地,对于常微分方程的边值问题也可得到与之等价的弗雷德霍姆积分方程。又如,偏微分方程中拉普拉斯方程的狄利克雷问题和诺伊曼问题,可分别利用双层位势和单层位势作为中介而归结为第二种弗雷德霍姆积分方程的求解,而且是等价的。粘性流体力学问题中的维纳- 斯托克斯方程的定解问题也可化为非线性积分方程组。这种利用位势求解微分方程的某些定解问题的方法,已有很多推广,有相当多的一阶或二阶椭圆型方程组的某些边值问题,引进类似于位势的积分算子,往往可归结为弗雷德霍姆积分方程或奇异积分方程。

在地质学中制作地球内部的精细三维图问题。这种图对勘探矿产、预报地震等等都很需要,但不能采用实验的方法来制作,而只能采取间接的方法解决,一般是借助尖端的精密仪器和人造卫星精确地定出地球外部点处的地球引力位势,再利用引力位势的方法归结出关于地球内部密度的第一种弗雷德霍姆积分方程。在空气动力学中研究分子运动,考虑非均匀流体中悬浮晶粒的布朗位移和热扩散,导致了以柯尔莫哥洛夫命名的一类积分方程。在确定飞机机翼的剖面时,需要对环流、升力、阻力等等效应进行计算,也往往导致一个积分方程(如薄翼理论的基本方程、升力线理论的方程等)。其他如中子迁移、电磁波衍射以及经济学与人口理论等都导致奇异积分方程的研究。 中国有不少学者致力于积分方程的理论和应用方面的研究,得到了许多有意义的结果。 [3]


相关文章推荐:
积分 | 数学物理 | 近代数学 | 戈特弗里德威廉莱布尼茨 | 阿贝尔 | 质点 | 拉普拉斯 | Laplace | 数学物理 | 拉普拉斯变换 | 傅里叶 | Fourier | 傅里叶变换 | 反演问题 | 泛函分析 | 复分析 | 计算数学 | 随机分析 | 数学思想 | 可积函数 | 弗雷德霍姆 | 奇异积分方程 | 诺特 | 微分方程 | 线性 | 非线性 | 牛顿第二运动定律 | 地球引力 | 质点 | 阿贝尔 | 弗雷德霍姆 | 整函数 | 弗雷德霍姆 | 行列式 | 齐次方程 | 行列式 | 弗雷德霍姆积分方程 | 弗雷德霍姆积分方程 | 弗雷德霍姆 | 沃尔泰拉 | 沃尔泰拉积分方程 | 弗雷德霍姆积分方程 | 迭代法 | 沃尔泰拉积分方程 | 向量 | 施密特 | 弗雷德霍姆积分方程 | 特征函数 | 格林 | 拉普拉斯方程 | 必要条件 | 弗雷德霍姆积分方程 | 系统理论 | 一维空间 | 有界函数 | 弗雷德霍姆积分方程 | 奇异积分方程 | 主值 | 柯西 | 维纳-霍普夫方程 | 解析函数 | 边值问题 | 潮汐现象 | 奇异积分方程 | 柯西主值 | 柯西 | 奇异积分方程 | 主值 | 霍普夫 | 大气辐射传输 | 弗雷德霍姆 | 诺特定理 | 诺特 | 非线性 | 奇异积分方程 | 希尔伯特空间 | 巴拿赫空间 | 巴拿赫空间 | 全连续算子 | 齐次方程 | 弗雷德霍姆 | 定解问题 | 常微分方程初值问题 | 初始条件 | 沃尔泰拉积分方程 | 常微分方程 | 边值问题 | 弗雷德霍姆积分方程 | 偏微分方程 | 拉普拉斯方程 | 狄利克雷 | 诺伊曼 | 定解问题 | 方程组 | 奇异积分方程 | 地球引力 | 弗雷德霍姆积分方程 | 分子运动 | 晶粒 | 柯尔莫哥洛夫 | 飞机机翼 | 环流 | 升力 | 阻力 | 薄翼理论 | 基本方程 | 升力线理论 | 中子 | 衍射 | 奇异积分方程 |
相关词汇词典