网站地图
子群

群是一种只有一个运算的、比较简单的代数结构;是可用来建立许多其他代数系统的一种基本结构。

如果群G的非空子集合H对于G的运算也成一个群,那么H称为G的子群。 设G 是群,H是G的非空子集,且H 关于G 上的运算 也构成群 ,则称H 是G的子群。 [1]

子群是群的特殊的非空子集。群G的非空子集H,若对G的乘法也成为群,则称H为G的子群,记为H≤G。若子群H≠G,则称H为G的真子群,记为HG或简记为H<G。任何一个非单位元群G至少有两个子群,G自身以及由单位元e作成的单位元群{e}(或用{1}或1表示),称它们为G的平凡子群。不是平凡子群的子群称为非平凡子群。群G的非空子集H为G的子群的充分必要条件是:对任意的a,b∈H,恒有ab∈H.若{Hi|i∈I}是G的子群的集合,I是一个指标集,则所有Hi的交Hi是G的一个子群。 [2]

一种只有一个运算的、比较简单的代数结构;是可用来建立许多其他代数系统的一种基本结构。

设G为一个非空集合,a、b、c为它的任意元素。如果对G所定义的一种代数运算“”(称为“乘法”,运算结果称为“乘积”)满足:

(1)封闭性,ab∈G;

(2)结合律,即(ab)c = a(bc);

(3)对G中任意元素a、b,在G中存在惟一的元素x,y,使得ax= b,ya=b,则称G对于所定义的运算“”构成一个群。例如,所有不等于零的实数,关于通常的乘法构成一个群;时针转动(关于模12加法),构成一个群。

满足交换律的群,称为交换群。

群是数学最重要的概念之一,已渗透到现代数学的所有分支及其他学科中。凡是涉及对称,就存在群。例如,可以用研究图形在变换群下保持不变的性质,来定义各种几何学,即利用变换群对几何学进行分类。可以说,不了解群,就不可能理解现代数学。

1770年,拉格朗日在讨论代数方程根之间的置换时,首先引入群的概念,而它的名称,是伽罗华在1830年首先提出的。

关于群的子群的判别问题,有下列命题:

1.设H是群<G,>的非空子集,则H是G的子群当且仅当H满足下列两条件之一:

(1)对任意a,b∈H,ab∈H 且a^(-1)∈H;

(2)对任意a,b∈H, ab^(-1)∈H。

任何群<G,>有两个平凡的子群:G和e,其中e是G的幺元。 [3]

H是群G的子群当且仅当其为非空集且在乘积和逆运算下为封闭的。(封闭条件是指:任两个在H内的元素a和b,ab和a1都为在H中。这两个条件可以结合成一个等价的条件:任两个在H内的a和b,ab1也会在H内。)在H是有限的情状下,则H是一个子群当且仅当H在乘积下为封闭的。(在此一情形下,每一个H的元素a都会产生一个H的有限循环子群,且a的逆元素会是a1 = an 1,其中n为a的目。)

上述的条件可以用同态来叙述;亦即,H为群G的子群当且仅当H为G的子集且存在一个由H映射到G的内含同态(即对每个a,i(a) = a)。

子群的单位元亦是群的单位元:若G是个有单位元素eG的群,且H为具有单位元素eH之G的子群,则eH = eG。

一个子群内的一元素之逆元素为群内的此元素的逆元素:若H是群G的子群,且a和b为会使得ab=ba=eH之H内的元素,则ab = ba = eG。

子群A和B的交集亦为一个子群。但其联集亦为一个子群当且仅当A或B包含着另外一个,像是2和3是在2Z与3Z的联集中,但其总和5则不是。

若S是G的子集,则存在一个包括S的最小子群,其可以由取得所有包括S的子群之交集来找出;此一最小子群被标记为<S>且称为由S产生的子群。G内的一个元素在<S>内当且仅当其为S内之元素的有限乘积且其逆元。

群G内的每一个元素a都会产生一个循环子群<a>。若<a>同构于某一正整数n之Z/nZ,则n会是最小个会使得an = e的正整数,且n被称为是a的“目”。若<a>同构于Z,则a会被称有“无限目”。

任一给定的群之子群都会形成一个在内含下的完全格,称之为子群格。(其最大下界为一般的集合论交集,而其一群子群的最小上界所此些子群之集合论联集“所产生”的子群。)若e为G的单位元素,则其当然群{e}会是群G的最小子群,而其最大子群则会是群G本身。 [4]


相关文章推荐:
代数系统 | | 代数系统 | 交换群 | 拉格朗日 | 伽罗华 | 幺元 | 子群格 |
相关词汇词典