网站地图
正定矩阵

[1] 在线性代数里,正定矩阵 (positive definite matrix) 有时会简称为正定阵。在线性代数中,正定矩阵的性质类似复数中的正实数。与正定矩阵相对应的线性算子是对称正定双线性形式(复域中则对应埃尔米特正定双线性形式)。

(1)广义定义:设M是n阶方阵,如果对任何非零向量z,都有zTMz> 0,其中zT 表示z的转置,就称M为正定矩阵。

例如:B为n阶矩阵,E为单位矩阵,a为正实数。在a充分大时,aE+B为正定矩阵。(B必须为对称阵)

(2)狭义定义:一个n阶的实对称矩阵M是正定的的条件是当且仅当对于所有的非零实系数向量z,都有zTMz> 0。其中zT表示z的转置。

Hermite正定矩阵

正定矩阵有以下性质 [1]

(1)正定矩阵的行列式恒为正;

(2)实对称矩阵A正定当且仅当A与单位矩阵合同;

(3)若A是正定矩阵,则A的逆矩阵也是正定矩阵;

(4)两个正定矩阵的和是正定矩阵;

(5)正实数与正定矩阵的乘积是正定矩阵。

对于n阶实对称矩阵A,下列条件是等价的:

(1)A是正定矩阵;

(2)A的一切顺序主子式均为正;

(3)A的一切主子式均为正;

(4)A的特征值均为正;

(5)存在实可逆矩阵C,使A=C′C;

(6)存在秩为n的m×n实矩阵B,使A=B′B;

(7)存在主对角线元素全为正的实三角矩阵R,使A=R′R [3]

(1)n 元实二次型

(2) 一个实对称矩阵 A 正定

(3) 实二次型

(4) 一个实对称矩阵 A 正定

(5) 一个实对称矩阵 A 正定

(6)A ,B 是实对称矩阵,则

(7)A 实对称矩阵, A 正定

根据正定矩阵的定义及性质,判别对称矩阵A的正定性有两种方法:

(1)求出A的所有特征值。若A的特征值均为正数,则A是正定的;若A的特征值均为负数,则A为负定的。

(2)计算A的各阶主子式。若A的各阶主子式均大于零,则A是正定的;若A的各阶主子式中,奇数阶主子式为负,偶数阶为正,则A为负定的。 [2]

对于具体的实对称矩阵,常用矩阵的各阶顺序主子式是否大于零来判断其正定性;对于抽象的矩阵,由给定矩阵的正定性,利用标准型,特征值及充分必要条件来证相关矩阵的正定性。 [3]


相关文章推荐:
线性代数 | 复数 | | 实数 | 线性算子 | 对称 | 埃尔米特 | 当且仅当 | 向量 | 转置 |
相关词汇词典