网站地图
直流输电

主要由换流站(整流站和逆变站)、直流线路、交流侧和直流侧的电力滤波器、无功补偿装置、换流变压器、直流电抗器以及保护、控制装置等构成(见图直流输电系统的基本构成)。其中换流站是直流输电系统的核心,它完成交流和直流之间的变换。

【词语】:直流输电

【注音】:zhí liú shū diàn

【英文简称】:DC

【释义】:将发电厂发出的交流电,经整流器变换成直流电输送至受电端,再用逆变器将直流电变换成交流电送到受端交流电网的一种输电方式。主要应用于远距离大功率输电和非同步交流系统的联网,具有线路投资少、不存在系统稳定问题、调节快速、运行可靠等优点。

直流输电与交流输电相比有以下优点:

①当输送相同功率时,直流线路造价低,架空线路杆塔结构较简单,线路走廊窄,同绝缘水平的电缆可以运行于较高的电压;

②直流输电的功率和能量损耗小;

③对通信干扰小;

④线路稳态运行时没有电容电流,没有电抗压降,沿线电压分布较平稳,线路本身无需无功补偿;

⑤直流输电线联系的两端交流系统不需要同步运行,因此可用以实现不同频率或相同频率交流系统之间的非同步联系;

⑥直流输电线本身不存在交流输电固有的稳定问题,输送距离和功率也不受电力系统同步运行稳定性的限制;

⑦由直流输电线互相联系的交流系统各自的短路容量不会因互联而显著增大;

⑧直流输电线的功率和电流的调节控制比较容易并且迅速,可以实现各种调节、控制。如果交、直流并列运行,有助于提高交流系统的稳定性和改善整个系统的运行特性。

直流输电的发展也受到一些因素的限制。首先,直流输电的换流站比交流系统的变电所复杂、造价高、运行管理要求高;其次,换流装置(整流和逆变)运行中需要大量的无功补偿,正常运行时可达直流输送功率的40~60%;换流装置在运行中在交流侧和直流侧均会产生谐波,要装设滤波器;直流输电以大地或海水作回路时,会引起沿途金属构件的腐蚀,需要防护措施。要发展多端直流输电,需研制高压直流断路器。

以直流电流传输电能。人们对电能的应用和认识是首先从直流开始的。法国物理学家和电气技师M.德普勒于1882年将装设在米斯巴赫煤矿中的 3马力直流发电机所发的电能,以1500~2000伏直流电压,送到了57公里以外的慕尼黑国际博览会上,完成了第一次输电试验。此后在20世纪初,试验性的直流输电的电压、功率和距离分别达到过125千伏、20兆瓦和225公里。但由于采用直流发电机串联获得高压直流电源,受端电动机也是用串联方式运行,不但高压大容量直流电机的换向困难而受到限制,串联运行的方式也比较复杂,可靠性差,因此直流输电在近半个世纪的时期里没有得到进一步发展。20世纪50年代,高压大容量的可控汞弧整流器研制成功,为高压直流输电的发展创造了条件;同时电力系统规模的扩大,使交流输电的稳定性问题等局限性也表现得更明显,直流输电技术又重新为人们所重视。1954年瑞典本土和哥得兰岛之间建成一条96公里长的海底电缆直流输电线,直流电压为±100千伏,传输功率为20兆瓦,是世界上第一条工业性的高压直流输电线。50年代后期可控硅整流元件的出现,为换流设备的制造开辟了新的途径。30年来,随着电力电子技术的进步,直流输电有了新的发展。到80年代世界上已投入运行的直流输电工程共有近30项,总输送容量约2万兆瓦,最长的输送距离超过1千公里。并且还有不少规模更大的工程正在规划设计和建设中。

在20世纪30~50年代,人们探索用各种器件构成换流器作为直流高电压电源, 以替代直流发电机,从而研制了可控汞弧阀换流器,为发展高压大功率直流输电开辟了道路,自1954年世界上第一个商业性的直流输电工程哥得兰岛直流输电工程建成以来, 直流输电又重新被人们所重视并迅速崛起,20世纪70年代,随着可控硅技术的突飞猛进的发展,高压直流输电的技术优势也日趋明显,因此说哥得兰岛直流输电工程的成功商业应用标志着直流输电的崛起。 [1]

直流输电目前主要用于5个方面:

①远距离大功率输电;

②联系不同频率或相同频率而非同步运行的交流系统;

③作网络互联和区域系统之间的联络线(便于控制、又不增大短路容量);

④以海底电缆作跨越海峡送电或用地下电缆向用电密度高的大城市供电;

⑤在电力系统中采用交、直流输电线的并列运行,利用直流输电线的快速调节,控制、改善电力系统的运行性能。

随着电力电子技术的发展,大功率可控硅制造技术的进步、价格下降、可靠性提高,换流站可用率的提高,直流输电技术的日益成熟,直流输电在电力系统中必然得到更多的应用。当前,研制高压直流断路器、研究多端直流系统的运行特性和控制、发展多端直流系统、研究交直流并列系统的运行机理和控制,受到广泛的关注。

许多科学技术学科的新发展为直流输电技术的应用开拓着广阔的前景,多种新的发电方式──磁流体发电、电气体发电、燃料电池和太阳能电池等产生的都是直流电,所产生的电能要以直流方式输送,并用逆变器变换送入交流电力系统;极低温电缆和超导电缆也更适宜于直流输电,等等。今后的电力系统必将是交、直流混合的系统。

直流屏 [1] 通用名为智能免维护直流电源屏,简称直流屏,通用型号为GZDW。简单地说,直流屏就是提供稳定直流电源的设备。(在输入有380V电源时直接转化为220V,在输入(市电和备用电)都无输入时,直接转化为蓄电池供电直流220V:实际上也可以说是一种工业专用应急电源)。发电厂和变电站中的电力操作电源现今采用的都是直流电源,它为控制负荷和动力负荷以及直流事故照明负荷等提供电源,是当代电力系统控制、保护的基础。直流屏由交配电单元、充电模块单元、降压硅链单元、直流馈电单元、配电监控单元、监控模块单元及绝缘监测单元组成。主要应用于电力系统中小型发电厂、水电站、各类变电站,和其他使用直流设备的用户(如石化、矿山、铁路等),适用于开关分合闸及二次回路中的仪器、仪表、继电保护和故障照明等场合。

直流屏是一种全新的数字化控制、保护、管理、测量的新型直流系统。监控主机部分高度集成化,采用单板结构(All in one),内含绝缘监察、电池巡检、接地选线、电池活化、硅链稳压、微机中央信号等功能。主机配置大液晶触摸屏,各种运行状态和参数均以汉字显示,整体设计方便简洁,人机界面友好,符合用户使用习惯。直流屏系统为远程检测和控制提供了强大的功能,并具有遥控、遥调、遥测、遥信功能和远程通讯接口。通过远程通讯接口可在远方获得直流电源系统的运行参数,还可通过该接口设定和修改运行状态及定值,满足电力自动化和电力系统无人值守变电站的要求;配有标准RS232/485串行接口和以太网接口,可方便纳入电站自动化系统。

直流电源(DC power)有正、负两个电极,正极的电位高,负极的电位低,当两个电极与电路连通后,能够使电路两端之间维持恒定的电位差,从而在外电路中形成由正极到负极的电流。 单靠水位高低之差不能维持稳恒的水流,而借助于水泵持续地把水由低处送往高处就能维持一定的水位差而形成稳恒的水流。与此类似,单靠电荷所产生的静电场不能维持稳恒的电流,而借助于直流电源,就可以利用非静电作用(简称为“非静电力”)使正电荷由电位较低的负极处经电源内部返回到电位较高的正极处,以维持两个电极之间的电位差,从而形成稳恒的电流。因此,直流电源是一种能量转换装置,它把其他形式的能量转换为电能供给电路,以维持电流的稳恒流动。

直流电源中的非静电力是由负极指向正极的。当直流电源与外电路接通后,在电源外部(外电路),由于电场力的推动,形成由正极到负极的电流。而在电源内部(内电路),非静电力的作用则使电流由负极流到正极,从而使电荷的流动形成闭合的循环。

2014年2月21日,国产单根电压等级最高、长度最长的直流海缆在舟山敷设入海,这标志着世界首个五端柔性直流输电示范工程进入后期攻坚阶段。

落户舟山的世界首个五端柔性直流输电示范工程,采用±200千伏直流电压,分别在定海、岱山、衢山、洋山、泗礁建设一座换流站,建设交流220千伏输电线路21.8公里,交流110千伏输电线路9.99公里;建设直流电缆输电线路141公里。项目建成后,将极大改善海岛电网的稳定性,为群岛新区跨越发展提供坚强的能源保障,也将为全国乃至世界范围内的新能源接入与海岛开发提供范本。

据悉,整个柔性直流工程计划于2014年4月完成海缆施工;5月进行系统带电调试及试验;6月实现五站全面建成投产。 [2]

2014年7月4日,在圆满完成168小时试运行后,世界首个五端柔性直流输电工程浙江舟山±200千伏五端柔性直流工程正式投入运营,标志着我国站上了世界柔性直流输电领域的制高点。 [3]

日前,世界首个五端柔性直流输电工程浙江舟山五端柔性直流输电示范工程开始进行为期90天的全面检修工作,这是该工程投运一年来首次全面“体检”。 [4]

2015年11月11日,福建厦门柔性直流输变电工程圆满完成单极线路空载升压试验,标志着世界首条±320千伏柔性直流电缆首次耐受额定电压试验取得成功。 [5]

2015年12月17日,世界上电压等级最高、输送容量最大的柔性直流工程厦门±320千伏柔性直流输电科技示范工程正式投运。 [6]


相关文章推荐:
换流站 | 无功补偿装置 | 直流电抗器 | 交流电 | 整流器 | 直流电 | 受电端 | 逆变器 | 电网 | 交流系统 | 架空线路 | 线路走廊 | 能量损耗 | 通信干扰 | 电容电流 | 无功补偿 | 交流系统 | 短路容量 | 并列运行 | 换流站 | 交流系统 | 变电所 | 无功补偿 | 输送功率 | 谐波 | 高压直流 | 断路器 | 直流发电机 | 兆瓦 | 高压直流电源 | 电动机 | 直流电机 | 整流器 | 高压直流输电 | 直流输电技术 | 海底电缆 | 高压直流 | 可控硅整流 | 电力电子技术 | 输送容量 | 兆瓦 | 换流器 | 直流发电机 | 可控硅 | 交流系统 | 区域系统 | 短路容量 | 海底电缆 | 地下电缆 | 电力电子技术 | 可控硅 | 换流站 | 可用率 | 直流输电技术 | 直流系统 | 磁流体发电 | 电气体发电 | 燃料电池 | 逆变器 | 超导电缆 | 直流屏 | 直流电源屏 | 直流电源 | 操作电源 | 动力负荷 | 事故照明 | 二次回路 | 继电保护 | 直流屏 | 直流系统 | 遥信 | 直流电源系统 | RS232 | 直流电源 | 静电场 | 静电作用 | 非静电力 | 正电荷 | 能量转换 | 维持电流 | 直流电源 | 外电路 | 电场力 | 内电路 | 舟山 | 直流电压 | 换流站 | 舟山 |
相关词汇词典