网站地图
置换矩阵

在数学上,特别是在矩阵理论中,置换矩阵是一个方形二进制矩阵,它在每行和每列中只有一个1,而在其他地方则为0。

设P 是一个 m×n 的 (0,1) 矩阵,如果 m≤n且 PP′=E,则称 P为一个 m×n的置换矩阵。其中P′是P的转置矩阵,E是m阶单位方阵。

定理 1 当 mn时,一个 m×n 的(0,1) 矩阵P为置换矩阵的充要条件是P的每一行恰有一个 1,每一列恰有一个 1。

置换矩阵在数学中的矩阵论里,置换矩阵是一种系数只由0和1组成的方块矩阵。置换矩阵的每一行和每一列都恰好有一个1,其余的系数都是0。在线性代数中,每个n阶的置换矩阵都代表了一个对n个元素(n维空间的基)的置换。当一个矩阵乘上一个置换矩阵时,所得到的是原来矩阵的横行(置换矩阵在左)或纵列(置换矩阵在右)经过置换后得到的矩阵。 [1]

每个n元置换都对应着唯一的一个置换矩阵。设π 为一个n元置换:

给出其映射图:

它对应的n × n的置换矩阵Pπ是:在第i横行只有π(i)位置上系数为1,其余为0。即可以写做:

其中每个表示正则基中的第j个,也就是一个左起第j个元素为1,其余都是0的n元横排数组。

由于单位矩阵是

置换矩阵也可以定义为单位矩阵的某些行和列交换后得到的矩阵 [2]

对两个n元置换π 和 σ的置换矩阵Pπ 和Pσ,有

一个置换矩阵Pπ 必然是正交矩阵(即满足

),

并且它的逆也是置换矩阵:

用置换矩阵Pπ右乘一个列向量 g所得到的是 g 的系数经过置换后的向量:

用置换矩阵Pπ左乘一个行向量 h 所得到的是 h 的系数经过置换后的向量:

Sn是n次对称群,由于n置换一共有n! 个,n阶的置换矩阵也有n! 个。这n! 个置换矩阵构成一个关于矩阵乘法的群。这个群的单位元就是单位矩阵。设A是所有n阶的置换矩阵的集合。映射Sn → A ? GL(n, Z2)是一个群的忠实表示。

对一个置换σ,其对应的置换矩阵Pσ是将单位矩阵的横行进行 σ 置换,或者将单位矩阵的横行进行 σ 置换得到的矩阵。

置换矩阵是双随机矩阵的一种。伯克霍夫-冯诺伊曼定理说明每个双随机矩阵都是同阶的置换矩阵的凸组合,并且所有的置换矩阵构成了双随机矩阵集合的所有端点。

置换矩阵Pσ的迹数等于相应置换σ的不动点的个数。设 a1、a2、……、ak 为其不动点的序号,则ea1、ea2、……、eak 是Pσ的特征向量。

由群论可以知道,每个置换都可以写成若干个对换的复合。由此可知,置换矩阵Pσ都可以写成若干个表示两行交换的初等矩阵的乘积。Pσ的行列式就等于 σ 的符号差。

对应于置换π = (1 4 2 5 3)的置换矩阵Pπ 是

给定一个向量 g

置换矩阵概念的一个推广是将方阵的情况推广到一般矩阵的情况:

一个m×n的0-1矩阵 P 是置换矩阵当且仅当 这时一个0-1矩阵是置换矩阵当且仅当它的每一行恰有一个1,每一列至多有一个1。 [3]

置换矩阵概念的另一个推广是将每行的1变为一个非零的实数:

一个n阶的方块矩阵 P 是置换矩阵当且仅当其每一行与每一列都恰好只有一个系数不为零。 这时的置换矩阵P可以看做由0和1组成的置换矩阵Q与一个对角矩阵相乘的结果。 [4]


相关文章推荐:
矩阵理论 | 转置矩阵 | 转置矩阵 | 充要条件 | 矩阵论 | 方块矩阵 | 线性代数 | 维空间 | 单位矩阵 | 正交矩阵 | 列向量 | 行向量 | 矩阵乘法 | 单位元 | 单位矩阵 | 随机矩阵 | 伯克霍夫 | 迹数 | 不动点 | 特征向量 | 群论 | 初等矩阵 | 行列式 | 方块矩阵 | 对角矩阵 |
相关词汇词典