网站地图
电子科学与技术

21世纪,随着现代科学技术的飞速发展,人类历史即将进入一个崭新的时代──信息时代。其鲜明的时代特征是,支撑这个时代的诸如能源、交通、材料和信息等基础产业均将得到高度发展,以能充分满足社会发展及人民生活的多方面需求。信息时代科学的基础是微电子技术和光电子技术,它们同属于教育部《授予博士、硕士学位和培养研究生的学科、专业目录》中的一级学科“电子科学与技术”。电子科学与技术是本科教育中的一个具体专业,也是研究生教育中的一级学科。

本专业培养具备物理电子、光电子与微电子学领域内宽广理论基础、实验能力和专业知识,能在该领域内从事各种电子材料、元器件、集成电路、乃至集成电子系统和光电子系统的设计、制造和相应的新产品、新技术、新工艺的研究、开发等方面工作的高级工程技术人才。

业务培养要求:本专业学生主要学习数学、基础物理、物理电子、光电子、微电子学领域的基本理论和基本知识,受到相关的信息电子实验技术、计算机技术等方面的基本训练,掌握各种电子材料、工艺、零件及系统的设计、研究与开发的基本能力。

毕业生应获得以下几方面的知识和能力:

1.具有坚实的自然科学基础,较好的人文社会科学基础,并熟练掌握一门外语;

2.系统地掌握本专业领域必需的较宽的技术基础理论;

3.具有较强的本专业领域的实验能力,计算机辅助设计与测试能力和工程实践能力;

4.了解本专业领域的理论前沿和发展动态;

5.掌握文献检索、资料查询的基本方法,具有一定的科学研究和实际工作能力。

主干学科:电子科学与技术

主要课程:电子线路、计算机语言、微型计算机原理、电动力学、量子力学、理论物理、固体物理、半导体物理、物理电子与电子学以及微电子学等方面的专业课程。

主要实践性教学环节:包括电子工艺实习、电子线路实验、计算机语言和算法实践、课程设计、生产实习、毕业设计等。一般安排20周。

本科专业:电子科学与技术

该专业以电子器件及其系统应用为核心,重视器件与系统的交叉与融合,面向微电子、光电子、光通信、高清晰度显示产业等国民经济发展需求,培养在通信、电子系统、计算机、自动控制、电子材料与器件等领域具有宽广的适应能力、扎实的理论基础、系统的专业知识、较强的实践能力、具备创新意识的高级技术人才和管理人才,并掌握一定的人文社会科学及经济管理方面的基础知识,能从事这些领域的科学研究、工程设计及技术开发等方面工作。

学院在加强通识教育的基础上,进一步拓宽专业口径,课程体系注意理工管结合、文理渗透和学科交叉,培养基础扎实、知识面宽、能力强、素质高、德智体美全面发展的创新人才。学生主要修学内容:电路基础、计算机结构与逻辑设计、电子科学与技术学科概论、信号与系统、电子电路基础、微机系统与接口、电磁场理论、固体物理基础、半导体物理、现代光学基础、信息电子技术中的场与波、光电子物理基础、电子器件、VLSI设计基础、显示技术、光电子技术、微波毫米波电子学、光纤通信、数字信号处理、半导体集成电路、嵌入式系统概论等。

信息显示科学与技术

信息光电子科学与技术

微电子技术

大规模集成电路系统

光纤通信

应用电子技术

新型电子器件与系统

相近专业:微电子学 自动化 电子信息工程 通信工程 计算机科学与技术 电子科学与技术 生物医学工程 电气工程与自动化 信息工程 信息科学技术 软件工程 影视艺术技术 网络工程 信息显示与光电技术 集成电路设计与集成系统 光电信息工程 广播电视工程 测控技术与仪器电气信息工程 计算机软件 电力工程与管理 智能科学与技术 数字媒体艺术 计算机科学与技术 探测制导与控制技术电气工程及其自动化 数字媒体技术 信息与通信工程 建筑电气与智能化 电磁场与无线技术

修业年限:四年

授予学位:工学学士

电子科学与技术专业中微电子技术和光电子技术的前身是半导体专业和激光专业。

1948年美国贝尔实验室发明了晶体管,开创了固体电子技术时代。根据国外发展电子器件的进程,中国在1956年提出了“向科学进军”,将半导体技术列为重点发展的领域之一。同年,中科院应用物理所首先举办了半导体器件短期培训班,请回国的半导体专家黄昆、吴锡九、黄敞、林兰英、王守武、成众志等讲授半导体理论、晶体管制造技术和半导体线路。由北京大学、复旦大学、吉林大学、西安电子科技大学和南京大学五所大学联合开办了半导体物理专业;在工科院校,清华大学率先开办了半导体专业。

到了1970年前后,随着对半导体器件需求量的增加,尤其是大型电子计算机对集成电路需求的推动,促进了国内半导体工业的发展以及对专业人才的需求,全国很多高校都先后增加了半导体物理与器件专业。进入20世纪80年代,由于国内半导体器件和集成电路生产还缺乏竞争力,受到进口元器件的冲击,很多半导体器件厂下马或转产,市场不景气导致了很多高校的半导体专业被迫取消,专业萎缩。

进入20世纪90年代,由于微型计算机、通信、家电等信息产业的发展和普及,对集成电路芯片的需求量越来越大,此外几场局部战争让全世界接受了电子战、信息战的高科技战争的理念。微电子技术得到了前所未有的重视,半导体技术专业由此更名为微电子技术专业。为了在信息时代和高科技领域赶上国际先进水平,国家加大了对微电子技术行业的支持力度,并不断吸引外资,市场对微电子技术专业毕业生的需求不断增加,从而迎来了微电子技术专业发展的新高峰。

微电子技术一般是指以集成电路技术为代表,制造和使用微小型电子元器件和电路,实现电子系统功能的新兴技术学科,主要涉及研究集成电路的设计、制造、封装相关的技术与工艺。由于实现信息化的网络、计算机和各种电子设备的基础是集成电路,因此微电子技术是电子信息技术的核心技术和战略性技术,是信息社会的基石。

微电子技术相关行业主要是集成电路行业和半导体制造行业,它们既是技术密集型产业,又是投资密集型产业,是电子工业中的重工业。与集成电路应用相关的主要行业有:计算机及其外设、家用电器及民用电子产品、通信器材、工业自动化设备、国防军事、医疗仪器等。

(1)国际概况

微电子工业发展的主导国家是美国和日本,发达国家和地区有韩国和西欧。从技术层面上考虑,集成电路制造技术的发展经历了6个阶段:小规模集成电路(SSI)(1962年)、中规模集成电路(MSI)(1966年)、大规模集成电路(LSI)(1967年)、超大规模集成电路(VLSI)(1977年)、特大规模集成电路(ULSI)(1993年)和巨大规模集成电路(GSI)(1994年)。

(2)国内概况

中国微电子技术产业现状分为大陆和台湾地区。中国台湾地区,90年代半导体工业进入迅猛发展时期,19911997年间其工业规模年均增长率高达32%。已经成为世界半导体制造中心和国际上主要的芯片供应地。特别是在半导体晶片生产方面,其产量占全世界晶片产量的20%。

中国内地,集成电路起步于1965年。但在之后30年间发展缓慢,与世界发达国家和地区的差距愈拉愈远。到了“九五”计划期间,国家加大投资,才拉开了新世纪中国内地加速发展微电子产业的序幕。通过启动“909工程”,成功建成25条芯片制造线。中国集成电路市场持续快速增长。2003年中国集成电路产量为96.3亿块,产值达到1470亿元,比2002年增长22.5%。巨大的市场吸引国际知名集成电路企业纷纷来华投资。

(3)发展趋势

1975年摩尔提出了关于集成电路集成度发展的“摩尔定律”,这个定律说,集成度(即电路芯片的电子器件数)每18个月翻一番,而价格保持不变甚至下降。几十年的发展状况基本上符合了这个定律。由此可见这一领域发展速度之快,竞争之激烈。

现代经济发展的数据表明,GDP每增长100元,需要10元左右电子工业产值和1~3元集成电路产值的支持。据美国半导体协会(SIA)预测,到2012年,集成电路全行业销售额将达到1万亿美元,它将支持6万亿到8万亿美元的电子装备、30万亿美元的电子信息服务业和约50万亿美元GDP。

光电子技术涉及以下内容:作为光子产生、控制的激光技术及其相关应用技术;作为光子传输的波导技术;作为光子探测和分析的光子检测技术;光计算和信息处理技术;作为光子存储信息的光存储技术;光子显示技术;利用光子加工与物质相互作用的光子加工与光子生物技术。由以上技术形成的光电子行业的五大类产业格局:光电子材料与元件产业、光信息(资讯)产业、传统光学(光学器材)产业、光通信产业、激光器与激光应用(能量、医疗)产业。

(1)国际概况

许多国家,特别是工业发达国家,都在大力发展光电子技术和产业,虽然20002002年光通信领域出现较大滑坡,但是根据美国光电子行业协会(OIDA)的统计,全世界光子技术产业的市场规模已达1.5万亿美元。国外光电子产业主要在美国、日本和西欧,美国和日本的光电子产业发展现状与趋势具有代表性。美国将光电子技术的应用领域分为民用和军用两大类:民用包括计算、通信、娱乐、教育、电子商务、公共卫生和交通运输;军用包括部队指挥和控制系统、照相、雷达、飞行传感器和光制导武器。光电子技术行业的主要产品包括:激光器、光盘、成像传感器、光纤以及关键部位使用光电子元器件的所有仪器和系统。在北美(美国和加拿大)有大约15万人从事光电子方面的工作,光电子技术产业创造的税收从1991年的40亿美元增长到2003年的超过200亿美元。

(2)国内概况

中国光电子技术产业的现状分为大陆和台湾地区。近20多年来,随着中国大陆的改革开放,使中国内地的激光、光电子科学事业的发展立足创新、面向市场,取得了前所未有的进步。在多项国家级战略性科技计划中,激光、光电子技术受到重视。“863计划”七大领域中有激光技术和光电子技术(包括用于信息领域的激光技术),1995年又增列了“惯性约束聚变”(高功率激光及激光核聚变)项目。国防预研光电技术作为跨部门项目正式立项。国家“六五”和“七五”攻关计划,激光、光电子技术被列为重大项目。

(3)发展趋势

光电子产业是21世纪的支柱产业之一。国家发展委员会从2002年开始组织实施光电子产业化专项,拟分3年实施。光电子专项产业化目标是:①根据中国在光电子研究开发方面所具有的技术优势和资源特点,重点支持一批技术水平高、市场前景好的光电子产品,实现产业技术升级,并尽量形成规模生产。②“十五”期间初步形成具有知识产权和产业优势的光电子产业体系。通过对中国已有技术和资源优势并在国际市场有竞争力的光电子产品的重点支持,力争在“十五”期间使国内光电子产业能够满足国内各行业的需要,并进入国际市场。③通过技术创新和项目建设的带动,扶持光电子产业基地的形成。

电子科学与技术专业的教育质量、规模、结构和市场的关系是一种相互制约、相辅相成的辨证关系。教育应该适应生产力的发展需要,因此电子科学与技术专业规模和结构必然受到行业市场冷热的影响。若成为热门专业,必然导致优秀生源增加,从而使教学质量提高;就教方而言,教育质量除了受到教师、教材、课程,方式等纯教学因素的影响之外,同样受到专业规模和结构的制约,比如招生规模扩大造成教学资源的短缺(人均空间、时间、师资和设备的减少)、专业结构设置和不同专业结构教学规范的不合理等。这些因素都会使教学质量下降。

专业设置中的问题:社会需求对本专业的培养规格和模式起到决定性作用。因此,不同层次的大专院校开办电子科学与技术专业也应定位于不同的培养层次上。一般来讲,大学本科教育的培养目标是通用性专门人才,研究生教育的培养目标是高层次研究型专业人才,但是各校的办学目标不能一刀切,应根据需求分出层次。另外,布点应根据市场需求,不能盲目追求“大而全”。

教学环节中的问题:在社会环境和市场调节的作用下,如何提高教学质量是一个重大和综合性课题。影响教学质量的校内要素是“教”与“学”,“教方”的要素有:教师队伍、课程设置、教材选择、教学方式;“学方”的要素是学习目的、上课态度。在这些方面存在着:教师队伍老化,年轻教师不愿干教学,授课教师不稳定;课程设置不规范,不是按需设课而是“因人设课”,实验和实习环节有流于形式的趋势;教材选择和讲授内容没有统一标准,仍然是“因人而异”;教学方式的多样化和相互结合不够;“宽进严出”的原则正被“宽进宽出”所取代;学生学习多以“自我为中心”,学习目的比较盲目等问题。因此,学校必须从以下的“教”与“学”两个方面来抓“质量”,只有经过“教”与“学”双方要素的协调发展,才能保证教学质量的提高。

根据前面对国内外电子科学与技术行业的现状和发展趋势分析,美国、西欧、日本、韩国、台湾地区的电子科学与技术产业已经步入上升轨道。中国随着市场开放和外资的不断涌入,电子科学与技术产业开始焕发活力。中国“十一五”规划的建议书将信息产业列入重点扶植产业之一,中国军事和航天事业的蓬勃发展也必然带动电子科学与技术行业的发展和内需。中国电子科学与技术产业将有一个明显的发展空间,高科技含量的自主研发的产品将进入市场,形成自主研发和来料加工共存的局面;中国大、中、小企业的分布和产品结构趋于合理,出口产品将稳步增加;高技术含量产品将向民用化发展,必然促进产品的内需和产量。随着社会需求会逐步扩大,电子科学与技术专业总体就业前景看好。

拥有电子科学与技术国家一级重点学科的高校(排名不分前后):

电子科技大学

清华大学

东南大学

拥有电子科学与技术国家二级重点学科的高校(不含已拥有电子科学与技术国家一级重点学科的高校):

物理电子学

北京理工大学,哈尔滨工业大学

电路与系统

西北工业大学

微电子学与固体电子学

天津大学,吉林大学,南京大学,华中科技大学,西安交通大学

电磁场与微波技术

北京航空航天大学,上海交通大学,南京理工大学

电子科学与技术国家二级重点(培育)学科名单

类别

学科代码及名称

学校名称

二级学科

080901物理电子学

西安交通大学

080903微电子学与固体电子学

国防科学技术大学

教育部学科评估是教育部官方按照国务院学位委员会的要求对全国各高校的所有一级学科进行的综合性排名,是评价大学的唯一具有官方性质的排名,分别于2002年、2007年、2012年进行了三次。

信息领域主要的一级学科共有4个,分别是:0809电子科学与技术、0810信息与通信工程、0811控制科学与工程、0812计算机科学与技术。这四个一级学科覆盖面广、积淀深厚、发展迅速、热门度高、开设广泛,是信息领域的核心学科,也是中国各大高校尤其是C9高校和其他985高校重点发展的对象,因而竞争极其激烈。此外,0803光学工程、0835软件工程这两个小学科也属于信息领域。

本一级学科中,全国具有“博士一级”授权的高校共40所,本次有32所参评;还有部分具有“博士二级”授权和硕士授权的高校参加了评估;参评高校共计50所。 (注:以下相同得分按学校代码顺序排列。)

全国排名

学校代码及名称

学科整体水平得分

1

10614电子科技大学

92

2

10286东南大学

89

3

10001北京大学

87

4

10701西安电子科技大学

85

10003清华大学

6

10248上海交通大学

83

7

10246 复旦大学

81

10284 南京大学

9

10013 北京邮电大学

80

10

10698 西安交通大学

78

11

10183 吉林大学

77

10335 浙江大学

10487 华中科技大学

90002 国防科学技术大学

15

10006 北京航空航天大学

75

10007 北京理工大学

17

10056 天津大学

73

10288 南京理工大学

10699 西北工业大学

90045 空军工程大学

21

10269 华东师范大学

72

10532 湖南大学

23

10357 安徽大学

70

10386 福州大学

10486 武汉大学

26

10293 南京邮电大学

69

10384 厦门大学

28

10110 中北大学

68

10112 太原理工大学

10141 大连理工大学

10186 长春理工大学

10216 燕山大学

10280 上海大学

10422 山东大学

10536 长沙理工大学

10617 重庆邮电大学

10700 西安理工大学

10730 兰州大学

39

10058 天津工业大学

66

10512 湖北大学

10613 西南交通大学

42

10009 北方工业大学

65

10356 中国计量学院

10445 山东师范大学

10495 武汉纺织大学

10697西北大学

47

10459 郑州大学

64

10475 河南大学

10602 广西师范大学

50

11407 北方民族大学

62

研究生院 [1]

中国研究生院院长联席会成员单位(57所)

北京大学研究生院

中国人民大学研究生院

清华大学研究生院

北京交通大学研究生院

北京航空航天大学研究生院

北京理工大学研究生院

北京科技大学研究生院

北京邮电大学研究生院

中国农业大学研究生院

北京林业大学研究生院

中国协和医科大学研究生院

北京师范大学研究生院

南开大学研究生院

天津大学研究生院

大连理工大学研究生院

东北大学研究生院

吉林大学研究生院

东北师范大学研究生院

哈尔滨工业大学研究生院

哈尔滨工程大学研究生院

复旦大学研究生院

同济大学研究生院

上海交通大学研究生院

华东理工大学研究生院

华东师范大学研究生院

第二军医大学研究生院

南京大学研究生院

东南大学研究生院

南京航空航天大学研究生院

南京理工大学研究生院

中国矿业大学研究生院

河海大学研究生院

南京农业大学研究生院

浙江大学研究生院

中国科学技术大学研究生院

厦门大学研究生院

山东大学研究生院

中国石油大学研究生院

武汉大学研究生院

华中科技大学研究生院

中国地质大学研究生院

湖南大学研究生院

中南大学研究生院

国防科技大学研究生院

中山大学研究生院

华南理工大学研究生院

四川大学研究生院

重庆大学研究生院

西南交通大学研究生院

电子科技大学研究生院

西安交通大学研究生院

西北工业大学研究生院

西安电子科技大学研究生院

西北农林科技大学研究生院

兰州大学研究生院

第四军医大学研究生院

[2]


相关文章推荐:
科学技术 | 信息时代 | 微电子技术 | 光电子技术 | 一级学科 | 电子科技大学 | 东南大学 | 光电子 | 微电子 | 专业知识 | 电子材料 | 元器件 | 集成电路 | 基础物理 | 光电子 | 微电子学 | 电子材料 | 电子线路 | 电动力学 | 量子力学 | 半导体物理 | 微电子学 | 微电子技术 | 大规模集成电路 | 应用电子技术 | 微电子学 | 电子信息工程 | 通信工程 | 计算机科学与技术 | 生物医学工程 | 电气工程与自动化 | 信息工程 | 信息科学技术 | 软件工程 | 影视艺术技术 | 网络工程 | 集成电路设计与集成系统 | 光电信息工程 | 电气信息工程 | 电力工程与管理 | 数字媒体艺术 | 探测制导与控制技术 | 电气工程及其自动化 | 信息与通信工程 | 建筑电气与智能化 | 工学学士 | 电子科学与技术专业 | 贝尔实验室 | 中科院 | 黄昆 | 吴锡九 | 黄敞 | 林兰英 | 王守武 | 成众志 | 北京大学 | 复旦大学 | 吉林大学 | 西安电子科技大学 | 南京大学 | 清华大学 | 电子计算机 | 集成电路 | 半导体物理与器件 | 微型计算机 | 集成电路芯片 | 微电子技术 | 微电子技术专业 | 电子信息技术 | 技术密集型产业 | 工业自动化设备 | 国防军事 | 集成电路制造技术 | 小规模集成电路 | 中规模集成电路 | 超大规模集成电路 | 集成电路企业 | 摩尔定律 | 光电子材料 | 光通信 | 激光器 | 光子技术 | 光电子产业 | 雷达 | 863计划 | 惯性约束聚变 | 核聚变 | 电子科技大学 | 西安电子科技大学 | 清华大学 | 北京大学 | 东南大学 | 复旦大学 | 北京邮电大学 | 北京理工大学 | 哈尔滨工业大学 | 西北工业大学 | 天津大学 | 吉林大学 | 南京大学 | 华中科技大学 | 西安交通大学 | 北京航空航天大学 | 上海交通大学 | 南京理工大学 | 西安交通大学 | 国防科学技术大学 | 学科评估 | 教育部 | 国务院学位委员会 | 一级学科 | 信息与通信工程 | 控制科学与工程 | 计算机科学与技术 | C9 | 光学工程 | 软件工程 | 电子科技大学 | 东南大学 | 北京大学 | 西安电子科技大学 | 清华大学 | 上海交通大学 | 复旦大学 | 南京大学 | 北京邮电大学 | 西安交通大学 | 吉林大学 | 浙江大学 | 华中科技大学 | 国防科学技术大学 | 北京航空航天大学 | 北京理工大学 | 天津大学 | 南京理工大学 | 西北工业大学 | 空军工程大学 | 华东师范大学 | 湖南大学 | 安徽大学 | 福州大学 | 武汉大学 | 南京邮电大学 | 厦门大学 | 中北大学 | 太原理工大学 | 大连理工大学 | 长春理工大学 | 燕山大学 | 上海大学 | 山东大学 | 长沙理工大学 | 重庆邮电大学 | 西安理工大学 | 兰州大学 | 天津工业大学 | 湖北大学 | 西南交通大学 | 北方工业大学 | 中国计量学院 | 山东师范大学 | 武汉纺织大学 | 西北大学 | 郑州大学 | 河南大学 | 成都信息工程大学 | 广西师范大学 | 北方民族大学 | 北京大学研究生院 | 中国人民大学研究生院 | 清华大学研究生院 | 北京交通大学研究生院 | 北京航空航天大学研究生院 | 北京理工大学研究生院 | 北京科技大学研究生院 | 北京邮电大学研究生院 | 中国农业大学研究生院 | 北京林业大学研究生院 | 中国协和医科大学研究生院 | 北京师范大学研究生院 | 南开大学研究生院 | 天津大学研究生院 | 大连理工大学研究生院 | 东北大学研究生院 | 吉林大学研究生院 | 东北师范大学研究生院 | 哈尔滨工业大学研究生院 | 哈尔滨工程大学研究生院 | 复旦大学研究生院 | 同济大学研究生院 | 上海交通大学研究生院 | 华东理工大学研究生院 | 华东师范大学研究生院 | 第二军医大学研究生院 | 南京大学研究生院 | 东南大学研究生院 | 南京航空航天大学研究生院 | 南京理工大学研究生院 | 中国矿业大学研究生院 | 河海大学研究生院 | 南京农业大学研究生院 | 浙江大学研究生院 | 中国科学技术大学研究生院 | 厦门大学研究生院 | 山东大学研究生院 | 中国石油大学研究生院 | 武汉大学研究生院 | 华中科技大学研究生院 | 中国地质大学研究生院 | 湖南大学研究生院 | 中南大学研究生院 | 国防科技大学研究生院 | 中山大学研究生院 | 华南理工大学研究生院 | 四川大学研究生院 | 重庆大学研究生院 | 西南交通大学研究生院 | 电子科技大学研究生院 | 西安交通大学研究生院 | 西北工业大学研究生院 | 西安电子科技大学研究生院 | 西北农林科技大学研究生院 | 兰州大学研究生院 | 第四军医大学研究生院 |
相关词汇词典