网站地图
对数函数

一般地,对数函数以幂(真数)为自变量,指数为因变量,底数为常量的函数。

对数函数是6类基本初等函数之一。其中对数的定义:

如果ax =N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logaX(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

“log”是拉丁文logarithm(对数)的缩写,读作:[英][l][美][l, l]。

对数函数是6类基本初等函数之一。其中对数的定义:

如果ax=N(a>0,且a≠1),那么数x叫做以a为底N的对数,记作x=logaN,读作以a为底N的对数,其中a叫做对数的底数,N叫做真数。

一般地,函数y=logax(a>0,且a≠1)叫做对数函数,也就是说以幂(真数)为自变量,指数为因变量,底数为常量的函数,叫对数函数。

其中x是自变量,函数的定义域是(0,+∞),即x>0。它实际上就是指数函数的反函数,可表示为x=ay。因此指数函数里对于a的规定,同样适用于对数函数。

“log”是拉丁文logarithm(对数)的缩写,读作:[英][l][美][l, l]。

在实数域中,真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于等于零(若为负数,则值为虚数),底数则要大于0且不为1。

对数函数的底数为什么要大于0且不为1?【在一个普通对数式里 a<0,或=1 的时候是会有相应b的值。但是,根据对数定义:log以a为底a的对数;如果a=1或=0那么log以a为底a的对数就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)】

通常我们将以10为底的对数叫常用对数(common logarithm),并把log10N记为lgN。另外,在科学计数中常使用以无理数e=2.71828为底数的对数,以e为底的对数称为自然对数(natural logarithm),并且把logeN 记为In N。根据对数的定义,可以得到对数与指数间的关系:

当a>0,a≠1时,aX=N

由指数函数与对数函数的这个关系,可以得到关于对数的如下结论:

在实数范围内,负数和零没有对数;

有理和无理指数

如果

但是,如果是

对数可以简化乘法运算为加法,除法为减法,幂运算为乘法,根运算为除法。所以,在发明电子计算机之前,对数对进行冗长的数值运算是很有用的,它们广泛的用于天文、工程、航海和测绘等领域中。它们有重要的数学性质而在今天仍在广泛使用中。

复对数

复对数计算公式

复数的自然对数,实部等于复数的模的自然对数,虚部等于复数的辐角。

16世纪末至17世纪初的时候,当时在自然科学领域(特别是天文学)的发展上经常遇到大量精密而又庞大的数值计算,于是数学家们为了寻求化简的计算方法而发明了对数 [1]

德国的史蒂非(1487-1567)在1544年所著的《整数算术》中,写出了两个数列,左边是等比数列(叫原数),右边是一个等差数列(叫原数的代表,或称指数,德文是Exponent ,有代表之意)。

欲求左边任两数的积(商),只要先求出其代表(指数)的和(差),然后再把这个和(差)对向左边的一个原数,则此原数即为所求之积(商),可惜史提非并未作进一步探索,没有引入对数的概念。

纳皮尔对数值计算颇有研究。他所制造的「纳皮尔算筹」,化简了乘除法运算,其原理就是用加减来代替乘除法。 他发明对数的动机是为寻求球面三角计算的简便方法,他依据一种非常独等的与质点运动有关的设想构造出所谓对数方法,其核心思想表现为算术数列与几何数列之间的联系。在他的1619年发表《奇妙的对数表的描述》中阐明了对数原理,后人称为 纳皮尔对数,记为Nap.x,它与自然对数的关系为:

Nap.x=10(107/x)

由此可知,纳皮尔对数既不是自然对数,也不是常用对数,与现今的对数有一定的距离。

瑞士的彪奇(1552-1632)也独立地发现了对数,可能比纳皮尔较早,但发表较迟(1620)。

英国的布里格斯在1624年创造了常用对数。

1619年,伦敦斯彼得所著的《新对数》使对数与自然对数更接近(以e=2.71828...为底)。

对数的发明为当时社会的发展起了重要的影响,简化了行星轨道运算问题。正如科学家伽利略(1564-1642)说:「给我时间,空间和对数,我可以创造出一个宇宙」。 又如十八世纪数学家拉普拉斯( 1749-1827)亦提到:「对数用缩短计算的时间来使天文学家的寿命加倍」。

最早传入我国的对数著作是《比例与对数》,它是由波兰的穆尼斯(1611-1656)和我国的薛凤祚在17世纪中叶合 编而成的。当时在lg2=0.3010中,2叫真数,0.3010叫做假数,真数与假数对列成表,故称对数表。后来改用假数对数」。

我国清代的数学家戴煦(1805-1860)发展了多种求对数的捷法,著有《对数简法》(1845)、《续对数简法》(1846)等。1854年,英国的数学家艾约瑟(1825-1905)看到这些著作后,大为叹服。

当今中学数学教科书是先讲「指数」,后以反函数形式引出「对数」的概念。但在历史上,恰恰相反,对数概念不是来自指数,因为当时尚无分指数及无理指数的明确概念。布里格斯曾向纳皮尔提出用幂指数表示对数的建议。1742年,J.威廉(1675-1749)在给G.威廉的《对数表》所写的前言中作出指数可定义对数。而欧拉在他的名著《无穷小分析寻论》(1748)中明确提出对数函数是指数函数的逆函数,和21世纪的教科书中的提法一致。

和2x-1>0 ,得到x>1/2且x≠1,即其定义域为 {x 丨x>1/2且x≠1}

值域实数集R,显然对数函数无界;

定点对数函数的函数图像恒过定点(1,0);

单调性a>1时,在定义域上为单调增函数;

0<a<1时,在定义域上为单调减函数;

奇偶性非奇非偶函数

周期性不是周期函数

对称性:无

最值:无

零点:x=1

注意:负数和0没有对数

两句经典话:底真同对数正,底真异对数负。解释如下:

也就是说:若y=logab (其中a>0,a≠1,b>0)

当0<a<1, 0<b<1时,y=logab>0;

当a>1, b>1时,y=logab>0;

当0<a<1, b>1时,y=logab<0;

当a>1, 0<b<1时,y=logab<0。

e的定义:

设a>0,a≠1

方法一:

特殊地,当

方法二:

两边对x求导:y'/y=ln a,y'=yln a=a^xln a

特殊地,当a=e时,y'=(a^x)'=(e^x)'=e^xln e=e^x。

e=1

一般地,如果a(a>0,且a≠1)的b次幂等于N,那么数b叫做以a为底N的对数,记作logaN=b,其中a叫做对数的底数,N叫做真数

底数则要>0且≠1 真数>0

并且,在比较两个函数值时:

如果底数一样,真数越大,函数值越大。(a>1时)

如果底数一样,真数越小,函数值越大。(0<a<1时)

当a>0且a≠1时,M>0,N>0,那么:

推导:设

所以

两边取对数,则有

又因为

所以

(1)常用对数:lg(b)=log10b(10为底数)。

(2)自然对数:ln(b)=logeb(e为底数)。

e为无限不循环小数,通常情况下只取e=2.71828。

同底的对数函数与指数函数互为反函数。

当a>0且a≠1时,ax=N

关于y=x对称。

对数函数的一般形式为 y=ax,它实际上就是指数函数的反函数(图象关于直线y=x对称的两函数互为反函数),可表示为x=ay。因此指数函数里对于a的规定(a>0且a≠1),右图给出对于不同大小a所表示的函数图形:关于X轴对称、当a>1时,a越大,图像越靠近x轴、当0<a<1时,a越小,图像越靠近x轴。

可以看到,对数函数的图形只不过是指数函数的图形的关于直线y=x的对称图形,因为它们互为反函数


相关文章推荐:
| 真数 | 自变量 | 因变量 | 常量 | 基本初等函数 | 对数 | 对数 | 底数 | 真数 | 定义域 | 指数函数 | 反函数 | log | 拉丁文 | 约翰纳皮尔 | 数学 | 解析几何 | 代数学 | 基本初等函数 | 对数 | log | 对数 | 底数 | 真数 | | 真数 | 自变量 | 因变量 | 常量 | 定义域 | 指数函数 | 反函数 | log | 拉丁文 | 实数 | 根号 | 底数 | log | 实数 | 常用对数 | 无理数e | 对数 | 自然对数 | 指数 | 指数函数 | 实数 | 负数 | | | 正实数 | 底数 | 指数函数 | 乘法 | 加法 | 减法 | 幂运算 | 乘法 | 除法 | 电子计算机 | 整数 | 数列 | 等比数列 | | | 纳皮尔 | 化简 | 球面三角 | 对数表 | 瑞士 | 对数 | 布里格斯 | 伽利略 | 空间 | 拉普拉斯 | | 穆尼斯 | 薛凤祚 | 戴煦 | 对数 | | | 艾约瑟 | 指数 | 反函数 | 对数表 | 无穷小 | 指数函数 | 定义域 | 复合函数 | 底数 | 值域 | 实数集 | 定点 | 单调性 | 定义域 | 奇偶性 | 非奇非偶函数 | 周期性 | 周期函数 | | 底数 | 真数 | 底数 | 真数 | 函数值 | 无限不循环小数 | 指数函数 | 对称 | 反函数 | 直线 | 对称 | 反函数 |
相关词汇词典