网站地图
供电系统

供电系统就是由电源系统和输配电系统组成的产生电能并供应和输送给用电设备的系统。电力供电系统大致可分为TN,IT,TT 三种,其中TN系统又分为TN-C,TN-S,TN-C-S三种表现形式。

确定供电系统的一般原则是:供电可靠,操作方便、运行安全灵活,经济合理,具有发展的可能性。

(1)供电可靠性

供电可靠性是指供电系统不间断供电的可靠程度。应根据负荷等级来保证其不同的可靠性。在设计时,不考虑双重事故。

(2)操作方便,运行安全灵活

供电系统的接线应保证在正常运行和发生事故时操作和检修方便、运行维护安全可靠。为此,应简化接线,减少供电层次和操作程序。

(3)经济合理

接线方式在满足生产要求和保证供电质量的前提下应力求简单,以减少投资和运行费用,并应提高供电安全性。

(4)具有发展的可能性

接线方式应保证便于将来发展,同时能适应分期建设的需要。

(1)供电系统按系统接线布置方式可分为放射式、干线式、环式及两端电源供电式等接线系统;

(2)按运行方式可分为开式和闭式接线系统;

(3) 按对负荷供电可靠性的要求可分为无备用和有备用接线系统。在有备用接线系统中,其中一回线路发生故障时,其余线路能保证全部供电的成为完全备用系统;如果只能保证对重要用户的供电,则成为不完全备用系统。备用系统的投入方式可分为手动投入、自动投入和经常投入等几种。

矿山供电系统
  矿井供电线路和变电、配电设备组成的系统。矿井对供电系统的主要要求是安全可靠。 地面供电系统包括地面变电所和高、低压配电网。
  城市供电系统
  由供电电源、各级电压的电力网络组成的系统,是为现代城市提供能源的基础设施之一。城市供电系统规划是城市总体规划的组成部分。
  电力牵引供电系统
  电气化铁路向电力机车供给牵引用电能的系统。主要由牵引变电所和接触网组成。牵引变电所将电力系统通过高压输电线送来的电能加以降压和变流后输送给接触网,以供给沿线路行驶的电力机车。
  供电系统阻抗
  定义从公共连接点看进去的供电系统的阻抗称为供电系统阻抗。
  供电系统谐波
  概述供电系统谐波的定义是对周期性非正弦电量进行傅立叶级数分解,除了得到与电网基波频率相同的分量,还得到一系列大于电网基波频率的分量,这部分电量称为谐波。
  星形连接
  将三相电源或负载中每相的末端接在一起形成一个中性点,并再从每相的始端引出端线的连接方式(见图)。
  间谐波
  简介把含有供电系统设计运行频率(我国是50HZ)非整数倍频率的电压或电流定义为间谐波。
  飞机电气系统
  飞机的供电系统和各种用电设备的总称。供电系统包括飞机电源系统和飞机配电系统,前者用于产生和调节电能;后者用以分配和管理电能。

在TN系统中,所有电气设备的外露可导电部分均接到保护线上,并与电源的接地点相连,这个接地点通常是配电系统的中性点。

TN系统,称作保护接零。当故障使电气设备金属外壳带电时,形成相线和地线短路,回路电阻小,电流大,能使熔丝迅速熔断或保护装置动作切断电源。TN系统的电力系统有一点直接接地,电气装置的外露可导电部分通过保护导体与该点连接。

TN系统通常是一个中性点接地的三相电网系统。其特点是电气设备的外露可导电部分直接与系统接地点相连,当发生碰壳短路时,短路电流即经金属导线构成闭合回路。形成金属性单相短路,从而产生足够大的短路电流,使保护装置能可靠动作,将故障切除。

如果将工作零线N重复接地,碰壳短路时,一部分电流就可能分流于重复接地点,会使保护装置不能可靠动作或拒动,使故障扩大化。

在TN系统中,也就是三相五线制中,因N线与PE线是分开敷设,并且是相互绝缘的,同时与用电设备外壳相连接的是PE线而不是N线。因此我们所关心的最主要的是PE线的电位,而不是N线的电位,所以在TN-S系统中重复接地不是对N线的重复接地。如果将PE线和N线共同接地,由于PE线与N线在重复接地处相接,重复接地点与配电变压器工作接地点之间的接线已无PE线和N线的区别,原由N线承担的中性线电流变为由N线和PE线共同承担,并有部分电流通过重复接地点分流。由于这样可以认为重复接地点前侧已不存在PE线,只有由原PE线及N线并联共同组成的PEN线,原TN-S系统所具有的优点将丧失,所以不能将PE线和N线共同接地。

由于上述原因在有关规程中明确提出,中性线(即N线)除电源中性点外,不应重复接地。

该系统中保护线和中性线分开,系统造价略贵。除具有TN-C系统的优点外,由于正常时PE线不通过负荷电流,故与PE线相连的电气设备金属外壳在正常运行时不带电,所以适用于数据处理和精密电子仪器设备的供电,也可用于爆炸危险环境中。在民用建筑内部、家用电器等都有单独接地触点的插头。采用 TN-S供电既方便又安全。

该系统中保护线与中性线合并为PEN线,具有简单、经济的优点。当发生接地短路故障时,故障电流大,可使电流保护装置动作,切断电源。

该系统对于单相负荷及三相不平衡负荷的线路,PEN线总有电流流过,其产生的压降,将会呈现在电气设备的金属外壳上,对敏感性电子设备不利。此外,PEN线上微弱的电流在危险的环境中可能引起爆炸,所以有爆炸危险环境不能使用TN-C系统。

该系统PEN线自A点起分开为保护线(PE)和中性线(N)。分开以后N线应对地绝缘。为防止PE线与N线混淆,应分别给PE线和PEN线涂上黄绿相间的色标,N线涂以浅蓝色色标。此外,自分开后,PE线不能再与N线再合并。

TN-C-S系统是一个广泛采用的配电系统,无论在工矿企业还是在民用建筑中,其线路结构简单,又能保证一定安全水平。

在电源中性点直接接地的三相四线系统中,所有设备的外露可导电部分均经各自的保护线PE分别直接接地,称之为TT供电系统。

第一个符号 T 表示电力系统中性点直接接地,第二个符号 T 表示负载设备外露不与带电体相接的金属导电部分与大地直接联接,而与系统如何接地无关。在 TT 系统中负载的所有接地均称为保护接地,如图所示。这种供电系统的特点如下:

1 )当电气设备的金属外壳带电(相线碰壳或设备绝缘损坏而漏电)时,由于有接地保护,可以大大减少触电的危险性。但是,低压断路器(自动开关)不一定能跳闸,造成漏电设备的外壳对地电压高于安全电压,属于危险电压。

2 )当漏电电流比较小时,即使有熔断器也不一定能熔断,所以还需要漏电保护器作保护,因此 TT 系统难以推广。

3 )TT 系统接地装置耗用钢材多,而且难以回收、费工时、费料。

有的建筑单位是采用 TT 系统,施工单位借用其电源作临时用电时,应用一条专用保护线,以减少需接地装置钢材用量。

把新增加的专用保护线 PE 线和工作零线 N 分开,其特点是:

①共用接地线与工作零线没有电的联系;

②正常运行时,工作零线可以有电流,而专用保护线没有电流;

③ TT 系统适用于接地保护占很分散的地方。

IT系统是指在电源中性点不接地系统中,将所有设备的外露可导电部分均经各自的保护线PE分别直接接地,称之为IT供电系统。IT系统一般为三相三线制。

IT 方式供电系统 I 表示电源侧没有工作接地。第二个字母 T 表示负载侧电气设备进行接地保护。

IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电炉炼钢、大医院的手术室、地下矿井等处。地下矿井内供电条件比较差,电缆易受潮。运用 IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。

IT系统发生接地故障时,接地故障电压不会超过50V,不会引起相间电击的危险。

但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成回路,保护设备不一定动作(电流小于保护设备的额定值),这是有危险的。只有在供电距离不太长时才比较安全。这种供电方式在工地不用。

调度室(地调)就是调度地区电网运行的单位。调度员首先要下变电站实习几个月,熟悉变电站运行方式,然后在调度室实习半年左右,期满考试合格,可以任副职调度员。调度员的工作感觉比较乏味,整天都是电话,要倒班,上夜班是很正常的,而且调度命令绝对不可以有错。对于调度员和编制电网运行方式的方式室工作人员都要对电网结构继保工作事故处理有相当的掌握,因为难度在于在事故状态下,他们是事故处理的指挥者。好处就是不累、不脏、平均上两天休息四天,奖金高。

继保班一般有好几个,分管35kV/110kV/220kV/500kV几个电压等级的变电站的保护工作,这个是新进大学生经常去的而且很有学问的地方。一个搞继电保护的人,一般最少要三四年的实际工作经验才能充分熟悉掌握本局的保护工作。

信息中心这也是大量新生涌入的部门。因为供电局都有集控中心,都采用了能量管理系统(EMS),变电站大都实现了少人值守和无人值守,数据的采集设备的监控微机保护的实现,都离不开通讯。这个所年轻人特别多,多为计算机和通信专业毕业。

这个所主要对一次设备进行检修维护,定期进行试验。设置有系统班(管主变互感器),开关班(管断路器),高压班和化验班。修试所的人比较辛苦,工作环境充满油污,很多时候非常需要体力,所以基本上没有女生。以前,修试所的地位比较高,因为他们对一次设备了如指掌,修试所出来的人几乎胜任其他所有位置。修试所的地位有所下降(虽然工资奖金还是高),因为他们的工作尤其看重经验,而技术难度不高。此外,随着微机保护的普及和计算机通讯的应用,搞修试的对二次回路知道得就越来越少了。

就是对35kV~220kV输电线路进行维护的,野外工作,很艰苦。注重经验,没很多技术。

主管35kV以上变电站的运行。工资不少,但工作相对来说比较乏味,而且承担风险比较大,因为出事故的时候,基本上都可以从值班人员的身上找出一些责任来,所以被扣奖金的几率是最高的。

设有内校班(校电能表,不出差),现校班(出差到现场校表,大用户的装表工作),仪表班(电压表,电流表,温度表,压力表等各种仪表的维护校验工作)。这个所的工作比较轻松,而且相对最安全,风险也极小。当然,相应地,工资比较少。

基于TPS54350型DC/DC变换器的供电系统设计 [1]

介绍德州仪器公司推出的内含MOSFET的TPS54350型高效DCDC变换器的特性及引脚功能。描述TPS54350在某信号处理器供电系统中的应用。给出供电系统的详细设计方案和参考电路.同时也对实际工作中可能出现的问题进行了讨论,供硬件设计者参考。

TPS54350是德州仪器(TI)新推出的一款内置MOSFET的高效DC/DC变换器.采用小型16引脚HISSOP封装.连续输出电流为3 A时,输入电压范围为4.5 V~20 V。该变换器极大地简化了负载电源管理的设计,使得设计人员可直接通过中压总线(而不依赖额外的低电压总线)为数字信号处理器(DSP)、现场可编程门阵列(FPGA)及微处理器供电。TPS554350 SWIFT(采用集成FET技术的开关)DC/DC变换器的效率高达90%以上,非常适用于低功耗工业与商用电源、带液晶显示屏(LCD)的监视器与电视、硬盘驱动、视频图像卡以及9 V或12V墙式适配器负载点稳压装置。

TPS54350的特性和功能

2.1 TPS54350的特性

TPS54350型DC/DC变换器的主要特性如下:

连续输出电流为3 A时.效率达90%以上;

输入电压范围为4.5 V一20V:

输出电压可调低至0.891 V(精确度为l%);

可编程外部时钟同步:

宽的脉宽调制(1)WM)频率一固定为250 kHz、500 kHz或250 kHz~700 kHz的可调节范围:

峰值电流限制与热关断保护:

可调节的欠压关断;

内部软启动:

电源安全输出。

2.2 TPS54350引脚功能和电路功能

2.2.1 引脚功能

VIN:电压输入引脚,范围为4.5V~20V,必须旁路连接一个低等效串联电阻(ESR)的10μF陶瓷电容器:

UVL0:欠压闭锁输出:

PWRGD:开漏输出。该引脚为低电平时,表示输出低于期望的输出电压值。PWRGD比较器的输出端有一个内部的上升沿滤波器:

RT:频率设置引脚。在RT引脚与地(AGND)之间接一只电阻器.设置转换频率。将RT引脚接地或悬空可以得到一个内部备选频率;

SYNC:双向I/O同步引脚。当RT引脚悬空或置低电平时,SYNC为输出:当它与一个下降沿信号连接时,亦可作为一个输入端口来同步系统时钟:

ENA:使能引脚。低于0.5 V时。电路停止工作;悬空时被使能;

COMP:误差放大器输出:

VSENSE:误差放大器转换节点,基准电压值:

AGND:模拟地,内部与感应模拟地电路连接。与PGND和PowerPAD连接:

PGND:电源地,与AGND和PowerPAD连接;

VBIAS:内部8.0 v偏置电压。该引脚要接1只0.1 μF的陶瓷电容器:

PH:相位端,与外部LC滤波器连接;

BOOT:在BOOT引脚与PH引脚之间连接一只O.1μF的陶瓷电容器。

2.2.2 电路功能

TPS54530支持中等范围的电流输出.能够将输出电压降至0.891 V.其精度可达l%。TPS54530集成了高端MOSFET和一个可选择的低端外部MOS-FET栅极驱动器。此外,该器件还采用了高性能电压误差放大器,极大地改善了瞬时条件下的性能,从而可灵活选择输出滤波电感器与电容器。开关频率固定在250 kHz或500 kHz,也可以将其升高到7OO kHz,以缩小无源组件的尺寸。

图1示出TPS54350的实际应用电路,图中给出的是其中一种情况,其输出电压是可变的,通过改变电阻器R2的阻值,可得到期望的输出电压值。图l中的输入电压为12 V,输出电压为3.3 V,其中R2的计算公式为:

R2=R1x0.891/(Vo-0.891)

R1=1 KΩ

表1给出当Rl=l kΩ和R1=10 kΩ,时的几种输出电压下的R2的值。笔者设计的系统就是应用图1所示的电路来实现。根据不同的输出电压要求赋给R2不同的阻值,其阻值的取法可参照表l。另外,对于设计者来说,设计电路时要考虑到表2所列的几个因素。本系统中的R。=l kΩ。

TPS54350在信号处理系统中应用

3.1 系统组成及供电电路

本信号处理系统采用的是ADl公司的TS201S型ADSP组成的多片某仿真雷达信号处理系统.系统主要由5个DSP、1个FPGA和7个TPS54350组成。在以往使用的MAXl951和。PEGlll7的经验基础上.经过多方面的设计考虑,采用了TPS54350型DC/DC变换器.从表1可以看出.TPS54350可以输出3.3 V、2.5 V和1.2V的电压。系统中的DSP采用240 MHz时钟,每个指令周期约为4.17 ns。根据TS201S型ADSP的工作条件可知,当温度为25℃、时钟CCLK(为250 MHz时,典型情况下的VDD(1.25V)供电电流典型值为1.2 A,VDD的供电电流小于137 mA。TPS54350的额定输出电压为3 A.所以此系统的设计是合理的。

TigerShar DSP有3个电源,其中数字2.5 V(VDD_Io)为I/0供电;数字1.2 V(VDD)为DSP内核供电;模拟1.2 V(VDD_A)内部锁相环和倍频电路供电。系统将主机提供的5V,经过TPS54350得到2.5V和1.2 V的电压。各片DSP的数字1.2V(VDD)电源各由1个TPS54350供给。5个。DSP内部模块1.2V(VDD)由同一个。DSP的VDD(+1.2V)经滤波网络后解决。5个。DSP的FO 2.5V电源直接由主机提供的5V经过TPS54350得到2.5V统一供给,同时提供FPGA(EPU1。K30)的VccM(+2.5 V)电压。其中FPGA的Vcc_IO(+3.3V)利用TPS54350输出的+3.3V电压来供电。本系统的供电电路框图如图2所示。图3示出单个DSP的内核供电电路框图及外围电路配置。

3.2 问题及其解决方案

T37S54350采用小型16引脚HTSSOP封装。根据以往的经验,建议设计PC板时最好给TPS54350加上散热片,电源线尽量粗一点。在TPS54350的前后均加上滤波网络,尽量保证得到比较合适的电压。

系统中的EPlK30产生上电复位波形和时序控制。由于EPlK30需要一个配置电路,而且它和DSP存在一个上电先后的问题。即在上电后,如果FPGA完成配置文件的读入时.DSP仍未上电稳定.则应充分延长TStart_I0的低电平时间,以避免DSP上电未稳定而FPGA上电波形已结束的情况发生。因此。应保证DSP上电稳定先于FPGA配置文件的读入,此问题在系统设计时应予以充分重视.否则DSP将无法正常工作。TigerSharc TS201S要求数字2.5V和l-2V应同时上电。若无法严格同步,则应保证内核1.2V电源先上电.I/0的2.5 V电源后上电。本系统在数字2.5 V输入端并联了一个大容量电容器.在数字1.2 V输入端并联了一个小容量电容器.其目的就是为了保证2.5V充电时间大于1.2V充电时间.来解决电源供电先后的问题。

设计一个系统时.电源的设计起着重要的作用。电路的选择更为重要,选择一个性价比高、散热性能好、节省资源的电路是设计的关键。本文是在总结实践经验的基础上进行论述的,该雷达信号处理系统经过实际工作测试.证明其性能是很稳定的.供其他硬件设计者借鉴。

根据住建部、国家质量监督检验检疫总局联合发布的《住宅设计规范》(GB50096-2011)对住宅供电系统的设计作出相关规定,摘录如下:

8.7.2 住宅供电系统的设计, 应符合下列基本要求:

1. 应采用TT、TN-C-S或TN-S接地方式, 并进行总等电位联结;

2. 电气线路应采用符合安全和防火要求的敷设方式配线, 住宅套内的电气管线应采用穿管暗敷设方式配线。导线应采用铜芯绝缘线,每套住宅进户线截面不应小于10m,分支回路截面不应小于2.5m;

3. 住宅套内的空调电源插座、一般电源插座与照明应分路设计,厨房插座应设置独立回路,卫生间插座宜设置独立回路;

4. 除壁挂式分体空调电源插座外,电源插座回路应设置剩余电流保护装置;

5. 设洗浴设备的卫生间应作局部等电位联结;

6. 每幢住宅的总电源进线应设剩余电流动作保护或剩余电流动作报警。


相关文章推荐:
电源系统 | 放射 | 干线 | 环式 | 矿山供电系统 | 城市供电系统 | 电力牵引供电系统 | 供电系统阻抗 | 供电系统谐波 | 星形连接 | 间谐波 | 飞机电气系统 | 飞机配电系统 | 配电系统 | 中性点 | 相线 | 地线 | 回路电阻 | 三相电 | 重复接地 | TN-S系统 | 中性线 | TN-C系统 | 民用建筑 | PEN线 | 负荷 | 配电系统 | 低压断路器 | 中性点不接地系统 | 电网结构 | 继电保护 | 能量管理系统 | 互感器 | 断路器 | 二次回路 | 输电线路 | 住宅设计规范 | 厨房 |
相关词汇词典