网站地图
天然气(气体)

天然气是指自然界中天然存在的一切气体,包括大气圈、水圈、和岩石圈中各种自然过程形成的气体(包括油田气、气田气、泥火山气、煤层气和生物生成气等)。

而人们长期以来通用的“天然气”的定义,是从能量角度出发的狭义定义,是指天然蕴藏于地层中的烃类和非烃类气体的混合物。在石油地质学中,通常指油田气和气田气。其组成以烃类为主,并含有非烃气体。

天然气蕴藏在地下多孔隙岩层中,包括油田气、气田气、煤层气、泥火山气和生物生成气等,也有少量出于煤层。它是优质燃料和化工原料。

天然气主要用途是作燃料,可制造炭黑、化学药品和液化石油气,由天然气生产的丙烷、丁烷是现代工业的重要原料。天然气主要由气态低分子烃和非烃气体混合组成。

主要由甲烷(85%)和少量乙烷(9%)、丙烷(3%)、氮(2%)和丁烷(1%)组成。又称“沼气”。主要用作燃料,也用于制造乙醛、乙炔、氨、碳黑、乙醇、甲醛、烃类燃料、氢化油、甲醇、硝酸、合成气和氯乙烯等化学物的原料。天然气被压缩成液体进行贮存和运输。煤矿工人、硝酸制造者、发电厂工人、有机化学合成工、燃气使用者、石油精炼工等有机会接触本品。主要经呼吸道进入人体。属单纯窒息性气体。浓度高时因置换空气而引起缺氧,导致呼吸短促,知觉丧失;严重者可因血氧过低窒息死亡。高压天然气可致冻伤。不完全燃烧可产生一氧化碳。 [1]

天然气是存在于地下岩石储集层中以烃为主体的混合气体的统称,比重约0.65,比空气轻,具有无色、无味、无毒之特性。

天然气主要成分烷烃,其中甲烷占绝大多数,另有少量的乙烷、丙烷和丁烷,此外一般有硫化氢、二氧化碳、氮和水气和少量一氧化碳及微量的稀有气体,如氦和氩等。天然气在送到最终用户之前,为助于泄漏检测,还要用硫醇、四氢噻吩等来给天然气添加气味。

天然气不溶于水,密度为0.7174kg/Nm3,相对密度(水)为0.45(液化)燃点(℃)为650,爆炸极限(V%)为5-15。在标准状况下,甲烷至丁烷以气体状态存在,戊烷以上为液体。甲烷是最短和最轻的烃分子。

有机硫化物和硫化氢(HS)是常见的杂质,在大多数利用天然气的情况下都必须预先除去。含硫杂质多的天然气用英文的专业术语形容为"sour(酸的)"。

天然气每立方燃烧热值为8000大卡至8500大卡。每公斤液化气燃烧热值为11000大卡。气态液化气的比重为0.55。每立方液化气燃烧热值为25200大卡。每瓶液化气重14.5公斤,总计燃烧热值159500大卡,相当于20立方天然气的燃烧热值。

甲烷燃烧方程式

完全燃烧:CH4+2O2===CO2+2H2O(反应条件为点燃)

甲烷+氧气→二氧化碳+水蒸气

不完全燃烧:2CH4+3O2=2CO+4H2O

甲烷+氧气→一 氧化碳+水蒸气

计量单位

千瓦时(kwh)或焦耳(J)

加气站销售单位:CNG 元/立方米(元/m)、LNG **元/公斤

1、天然气按在地下存在的相态可分为游离态、溶解态、吸附态和固态水合物。只有游离态的天然气经聚集形成天然气藏,才可开发利用。

2、天然气按照存生成形式又可分为伴生气和非伴生气两种。

伴生气:伴随原油共生,与原油同时被采出的油田气。其中伴生气通常是原油的挥发性部分,以气的形式存在于含油层之上,凡有原油的地层中都有,只是油、气量比例不同。即使在同一油田中的石油和天然气来源也不一定相同。他们由不同的途径和经不同的过程汇集于相同的岩石储集层中。

非伴生气:包括纯气田天然气和凝析气田天然气两种,在地层中都以气态存在。凝析气田天然气从地层流出井口后,随着压力的下降和温度的升高,分离为气液两相,气相是凝析气田天然气,液相是凝析液,叫凝析油。若为非伴生气,则与液态集聚无关,可能产生于植物物质。世界天然气产量中,主要是气田气和油田气。对煤层气的开采,现已日益受到重视。

3、依天然气蕴藏状态,又分为构造性天然气、水溶性天然气、煤矿天然气等三种。而构造性天然气又可分为伴随原油出产的湿性天然气、不含液体成份的干性天然气。

4、天然气按成因可分为生物成因气、油型气和煤型气。无机成因气尤其是非烃气受到高度重视。

5、按天然气在地下的产状又可以分为油田气、气田气、凝析气、水溶气、煤层气、及固态气体水合物等。 [2]

天然气是较为安全的燃气之一,它不含一氧化碳,也比空气轻,一旦泄漏,立即会向上扩散,不易积聚形成爆炸性气体,安全性较其他燃体而言相对较高。

采用天然气作为能源,可减少煤和石油的用量,因而大大改善环境污染问题;天然气作为一种清洁能源,能减少二氧化硫和粉尘排放量近100%,减少二氧化碳排放量60%和氮氧化合物排放量50%,并有助于减少酸雨形成,舒缓地球温室效应,从根本上改善环境质量。

天然气作为汽车燃料,具有单位热值高、排气污染小、供应可靠、价格低等优点,已成为世界车用清洁燃料的发展方向,而天然气汽车则已成为发展最快、使用量最多的新能源汽车。

但是,对于温室效应,天然气跟煤炭、石油一样会产生二氧化碳。因此,不能把天然气当做新能源。其优点有:

天然气是一种洁净环保的优质能源,几乎不含硫、粉尘和其他有害物质,燃烧时产生二氧化碳少于其他化石燃料,造成温室效应较低,因而能从根本上改善环境质量。

天然气与人工煤气相比,同比热值价格相当,并且天然气清洁干净,能延长灶具的使用寿命,也有利于用户减少维修费用的支出。天然气是洁净燃气,供应稳定,能够改善空气质量,因而能为该地区经济发展提供新的动力,带动经济繁荣及改善环境。

天然气无毒、易散发,比重轻于空气,不宜积聚成爆炸性气体,是较为安全的燃气。

随着家庭使用安全、可靠的天然气,将会极大改善家居环境,提高生活质量。

天然气耗氧情况计算:1立方米天然气(纯度按100%计算)完全燃烧约需2.0立方米氧气,大约需要10立方米的空气。

天然气的成因是多种多样的,天然气的形成则贯穿于成岩、深成、后成直至变质作用的始终,各种类型的有机质都可形成天然气,腐泥型有机质则既生油又生气,腐植形有机质主要生成气态烃。

成岩作用(阶段)早期,在浅层生物化学作用带内,沉积有机质经微生物的群体发酵和合成作用形成的天然气称为生物成因气。其中有时混有早期低温降解形成的气体。生物成因气出现在埋藏浅、时代新和演化程度低的岩层中,以含甲烷气为主。生物成因气形成的前提条件是更加丰富的有机质和强还原环境。

最有利于生气的有机母质是草本腐植型腐泥腐植型,这些有机质多分布于陆源物质供应丰富的三角洲和沼泽湖滨带,通常含陆源有机质的砂泥岩系列最有利。硫酸岩层中难以形成大量生物成因气的原因,是因为硫酸对产甲烷菌有明显的抵制作用,H2优先还原硫酸根为硫离子形成金属硫化物或硫化氢等,因此二氧化碳不能被氢气还为甲烷。

甲烷菌的生长需要合适的地化环境,首先是足够强的还原条件,一般Eh<-300mV为宜(即地层水中的氧和SO42-依次全部被还原以后,才会大量繁殖);其次对pH值要求以靠近中性为宜,一般6.0~8.0,最佳值7.2~7.6;再者,甲烷菌生长温度O~75℃,最佳值37~42℃。没有这些外部条件,甲烷菌就不能大量繁殖,也就不能形成大量甲烷气。

油型气

沉积有机质特别是腐泥型有机质在热降解成油过程中,与石油一起形成的天然气,或者是在后成作用阶段由有机质和早期形成的液态石油热裂解形成的天然气称为油型气,包括湿气(石油伴生气)、凝析气和裂解气。

与石油经有机质热解逐步形成一样,天然气的形成也具明显的垂直分带性。在剖面最上部(成岩阶段)是生物成因气,在深成阶段后期是低分子量气态烃(C2~C4)即湿气,以及由于高温高压使轻质液态烃逆蒸发形成的凝析气。在剖面下部,由于温度上升,生成的石油裂解为小分子的轻烃直至甲烷,有机质亦进一步生成气体,以甲烷为主石油裂解气是生气序列的最后产物,通常将这一阶段称为干气带。

由石油伴生气→凝析气→干气,甲烷含量逐渐增多,故干燥系数升高。

煤型气

煤系有机质(包括煤层和煤系地层中的分散有机质)热演化生成的天然气称为煤型气。

煤田开采中,经常出现大量瓦斯涌出的现象,如重庆合川区一口井的瓦斯突出,排出瓦斯量竟高达140万立方米,这说明,煤系地层确实能生成天然气。

煤型气是一种多成分的混合气体,其中烃类气体以甲烷为主,重烃气含量少,一般为干气,但也可能有湿气,甚至凝析气。有时可含较多Hg蒸气和N2等。

煤型气也可形成特大气田,1960S以来在西西伯利亚北部K2、荷兰东部盆地和北海盆地南部P等地层发现了特大的煤型气田,这三个气区探明储量22万亿立方米,占世界探明天然气总储量的1/3弱。据统计(M.T哈尔布蒂,1970),在世界已发现的26个大气田中,有16个属煤型气田,数量占60%,储量占72.2%,由此可见,煤型气在世界可燃天然气资源构成中占有重要地位。

成煤作用与煤型气的形成:成煤作用可分为泥炭化和煤化作用两个阶段。前一阶段,堆积在沼泽、湖泊或浅海环境下的植物遗体和碎片,经生化作用形成煤的前身泥炭;随着盆地沉降,埋藏加深和温度压力增高,由泥炭化阶段进入煤化作用阶段,在煤化作用中泥炭经过微生物酶解、压实、脱水等作用变为褐煤;当埋藏逐步加深,已形成的褐煤在温度、压力和时间等因素作用下,按长焰煤→气煤→肥煤→焦煤→瘦煤→贫煤→无烟煤的序列转化。

实测表明,煤的挥发分随煤化作用增强明显降低,由褐煤→烟煤→无烟煤,挥发分大约由50%降到5%。这些挥发分主要以CH4、CO2、H2O、N2、NH3等气态产物的形式逸出,是形成煤型气的基础,煤化作用中析出的主要挥发性产物。

1.煤化作用中挥发性产物总量端口;

2、CO2 3.H2O 4. CH4 5.NH3 6.H2S

从形成煤型气的角度出发,应该注意在煤化作用过程中成煤物质的四次较为明显变化(煤岩学上称之为煤化跃变):

第一次跃变发生于长焰煤开始阶段,碳含量Cr=75-80%,挥发分Vr=43%,Ro=0.6%;

第二次跃变发生于肥煤阶段,Cr=87%,Vr=29%,Ro=1.3%;

第三次跃变发生烟煤→无烟煤阶段,Cr=91%,Vr=8%,Ro=2.5%;

第四次跃变发生于无烟煤→变质无烟煤阶段,Cr=93.5%,Vr=4%,Ro=3.7%,芳香族稠环缩合程度大大提高。

在这四次跃变中,导致煤质变化最为明显的是第一、二次跃变。煤化跃变不仅表现为煤的质变,而且每次跃变都相应地为一次成气(甲烷)高峰。

煤型气的形成及产率不仅与煤阶有关,而且还与煤的煤岩组成有关,腐殖煤在显微镜下可分为镜质组、类脂组和惰性组三种显微组分,中国大多数煤田的腐殖煤中,各组分的含量以镜质组最高,约占50~80%,惰性组占10~20%(高者达30~50%),类脂组含量最低,一般不超过5%。

在成煤作用中,各显微组分对成气的贡献是不同的。长庆油田与中国科院地化所(1984)在成功地分离提纯煤的有机显微组分基础上,开展了低阶煤有机显微组分热演化模拟实验,并探讨了不同显微组分的成烃贡和成烃机理。发现三种显微组分的最终成烃效率比约为类脂组:镜质组:惰性组=3:1:0.71,产气能力比约为3.3:1:0.8,说明惰性组也具一定生气能力。

地球上的所有元素都无一例外地经历了类似太阳上的核聚变的过程,当碳元素由一些较轻的元素核聚变形成后的一定时期里,它与原始大气里的氢元素反应生成甲烷。

地球深部岩浆活动、变质岩和宇宙空间分布的可燃气体,以及岩石无机盐类分解产生的气体,都属于无机成因气或非生物成因气。它属于干气,以甲烷为主,有时含CO2、N2、He及H2S、Hg蒸汽等,甚至以它们的某一种为主,形成具有工业意义的非烃气藏。

稀有气体He、Ar等由于其特殊的地球化学行为,科学家们常把它们作为地球化学过程的示踪剂。He、Ar的同位素比值3He/4He、40Ar/36Ar是查明天然气成因的极重要手段,因沿大气→壳源→壳、幔源混合→幔源,二者不断增大,前者由1.39×10-6→>10-5,后者则由295.6→>2000。此外,根据围岩与气藏中Ar同位素放射性成因,还可计算出气体的形成年龄(朱铭,1990)。 [3]

甲烷

无机合成:CO2+H2→CH4+H2O 条件:高温(250℃)、铁族元素

地球原始大气中甲烷:吸收于地幔,沿深断裂、火山活动等排出

板块俯冲带甲烷:大洋板块俯冲高温高压下脱水,分解产生的H、C、CO/CO2→CH4

天然气中高含CO2与高含烃类气一样,同样具有重要的经济意义,对于CO2气藏来说,有经济价值者是CO2含量>80%(体积浓度)的天然气,可广泛用于工业、农业、气象、医疗、饮食业和环保等领域。中国广东省三水盆地沙头圩水深9井天然气中CO2含量高达99.55%,日产气量500万方,成为有很高经济价值的气藏。

世界上已发现的CO2气田藏主要分布在中新生代火山区、断裂活动区、油气富集区和煤田区。从成因上看,共有以下几种:

无机成因 :

① 上地幔岩浆中富含CO2气体当岩浆沿地壳薄弱带上升、压力减小,其中CO2逸出。

②碳酸盐岩受高温烘烤或深成变质可成大量CO2,当有地下水参与或含有Al、Mg、Fe杂质,98~200℃也能生成相当量CO2,这种成因CO2特征:CO2含量>35%,δ13CCO2>-8‰。

③碳酸盐矿物与其它矿物相互作用也可生成CO2,如白云石与高岭石作用即可。

另外,有机成因有:生化作用、热化学作用、油田遭氧化煤氧化作用

N2

N2是大气中的主要成分,据研究,分子氮的最大浓度和逸度出现在古地台边缘的含氮地层中,特别是蒸发盐岩层分布区的边界内。氮是由水层迁移到气藏中的,由硝酸盐还原而来,其先体是NH4+

N2含量大于15%者为富氮气藏,天然气中N2的成因类型主要有:

① 有机质分解产生的N2:100-130℃达高峰,生成的N2量占总生气量的2.0%,含量较低;(有机)

② 地壳岩石热解脱气:如辉绿岩热解析出气量,N2可高达52%,此类N2可富集;

③ 地下卤水(硝酸盐)脱氮作用:硝酸盐经生化作用生成N2O+N2

④ 地幔源的N2:如铁陨石含氮数十~数百个ppm;

⑤ 大气源的N2:大气中N2随地下水循环向深处运移,混入最多的主要是温泉气。

从同位素特征看,一般来说最重的氮集中在硝酸盐岩中,较重的氮集中在芳香烃化合物中,而较轻的氮则集中在铵盐和氨基酸中。

H2S

全球已发现气藏中,几乎都存在有H2S气体,H2S含量>1%的气藏为富H2S的气藏,具有商业意义者须>5%。

据研究(Zhabrew等,1988),具有商业意义的H2S富集区主要是大型的含油气沉积盆地,在这些盆地的沉积剖面中均含有厚的碳酸盐一蒸发盐岩系。

自然界中的H2S生成主要有以下两类:

① 生物成因(有机):包括生物降解和生物化学作用;1

② 热化学成因(无机):有热降解、热化学还原、高温合成等。根据热力学计算,自然环境中石膏(CaSO4)被烃类还原成H2S的需求温度高达150℃,因此自然界发现的高含H2S气藏均产于深部的碳酸盐蒸发盐层系中,并且碳酸盐岩储集性好。

2005年,全球已探明的天然气总储量为179.53兆立方米。

天然气在空气中含量达到一定程度后会使人窒息。天然气不像一氧化碳那样具有毒性,它本质上是对人体无害的。不过如果天然气处于高浓度的状态,并使空气中的氧气不足以维持生命的话,还是会致人死亡的,毕竟天然气不能用于人类呼吸。作为燃料,天然气也会因发生爆炸而造成伤亡。

虽然天然气比空气轻而容易发散,但是当天然气在房屋或帐篷等封闭环境里聚集的情况下,达到一定的比例时,就会触发威力巨大的爆炸。爆炸可能会夷平整座房屋,甚至殃及邻近的建筑。甲烷在空气中的爆炸极限下限为5%,上限为15%。

天然气车辆发动机中要利用的压缩天然气的爆炸,由于气体挥发的性质,在自发的条件下基本是不具备的,所以需要使用外力将天然气浓度维持在5%到15%之间以触发爆炸。

自然界中天然气分布很广,成因类型繁多且热演化程度不同,其地化特征亦多种多样,因此很难用统一的指标加以识别。实践表明,用多项指标综合判别比用单一的指标更为可靠。天然气成因判别所涉及的项目看,主要有同位素、气组分、轻烃以及生物标志化合物等四项,其中有些内容判别标准截然,具有绝对意义,有些内容则在三种成因气上有些重叠,只具有一定的相对意义。

天然气是一种重要的能源,广泛用作城市煤气和工业燃料;但通常所称的天然气只指贮存于地层较深部的一种富含碳氢化合物的可燃气体,而与石油共生的天然气常称为油田伴生气。

天然气燃料是各种替代燃料中最早广泛使用的一种,它分为压缩天然气(CNG)和液化天然气(LNG)两种。工业用天燃气可用外混式烧嘴进行燃烧。

液化天然气

天然气在常压下,冷却至约 -162℃时,则由气态变成液态,称为液化天然气(英文LiquefiedNaturalGas,简称LNG)。LNG的主要成分为甲烷,还有少量的乙烷、丙烷以及氮等。天然气在液化过程中进一步得到净化,甲烷纯度更高,几乎不含二氧化碳和硫化物,且无色无味、无毒。

液化天然气(LNG)在中国已经成为一门新兴工业,正在迅猛发展。液化天然气(LNG)技术除了用来解决运输和储存问题外,还广泛地用于天然气使用时的调峰装置上。由于天然气的产地往往不在工业或人口集中地区,因此必须解决运输和储存问题。天然气的主要成分是甲烷,其临界温度为190.58K,在常温下无法仅靠加压将其液化。天然气的液化、储存技术已逐步成为一项重大的先进技术。

液化天然气优势

液化天然气与天然气比较有以下优点:

①便于贮存和运输;

液化天然气密度是标准状态下甲烷的625倍。也就是说,1m3液化天然气可气化成625 m3天然气,由此可见贮存和运输的方便性。

②安全性好;

天然气的储藏和运输主要方式是压缩(CNG)。由于压缩天然气的压力高,带来了很多安全隐患。

③间接投资少;

压缩天然气(CNG)体积能量密度约为汽油的26%,而液化天然气(LNG)体积能量密度约为汽油的72%,是压缩天然气(CNG)的两倍还多,因而使用LNG的汽车行程远,相对可大大减少汽车加气站的建设数量。

④调峰作用;

天然气作为民用燃气或发电厂的燃料,不可避免会有需要量的波动,这就要求供应上具有调峰作用。

⑤环保性;

天然气在液化前必须经过严格的预净化,因而LNG中的杂质含量远远低于CNG,为汽车尾气或作为燃料使用时排放满足更加严格的标准(如“欧Ⅱ”甚至“欧Ⅲ”)创造了条件。

液化石油气

液化石油气是石油产品之一。英文名称liquefied petroleum gas,简称LPG。是由炼厂气或天然气(包括油田伴生气)加压、降温、液化得到的一种无色、挥发性气体。

液化石油气(简称液化气)是石油在提炼汽油、煤油、柴油、重油等油品过程中剩下的一种石油尾气,通过一定程序,对石油尾气加以回收利用,采取加压的措施,使其变成液体,装在受压容器内,液化气的名称即由此而来。它的主要成分有乙烯、乙烷、丙烯、丙烷和丁烷等,同时含有少量戊烷、戊烯和微量硫化合物杂质。由天然气所得的液化气的成分基本不含烯烃。在气瓶内呈液态状,一旦流出会汽化成比原体积大约二百五十倍的可燃气体,并极易扩散,遇到明火就会燃烧或爆炸。因此,使用液化气也要特别注意。

液化煤层气

中国是世界煤炭生产大国,煤层气相应的储藏量也很大,储藏量和天然气基本一样。其基本成分是甲烷。它除了是廉价的化工原料外,主要作为燃料使用,它不仅作为居民的生活燃料,而且还被用作汽车、船舶、飞机等交通运输工具的燃料。由于煤层气热值高,燃烧产物对环境污染少,被认为是优质洁净燃料。

将煤层气液化后使用,主要有几方面好处:

① 经济性;

投资成本较低,回收快。

② 安全性;

“先采气,后采煤”的方式已成为发达国家能源利用的基本方式。“先采气,后采煤”大大提高了采煤的安全性。

③ 政策性;

此方式可节约能源,做到能源的彻底利用,符合国家的相关政策。有利于获得政府的支持。

煤层气液化设备和天然气液化设备基本一样,只是由于大多数煤层气中氧、氮的含量比天然气略高,需要增加一套精馏系统。

压缩天然气(Compressed Natural Gas,简称CNG)是天然气加压并以气态储存在容器中。压缩天然气除了可以用油田及天然气田里的天然气外,还可以人工制造生物沼气(主要成分是甲烷)。

压缩天然气与管道天然气的组分相同,主要成分为甲烷(CH4)。CNG可作为车辆燃料使用。CNG可以用来制作LNG(Liquefied Natural Gas),这种以CNG为燃料的车辆叫做NGV(NaturalGasVehicle)。液化石油气(Liquefied Petroleum Gas,简称LPG)经常容易与CNG混淆,其实它们有明显区别。

CNG压缩天然气的火灾危险性

1.燃烧爆炸性---可燃气体处于爆炸浓度范围内遇引火源能发生燃烧或爆炸。

2.扩散性---气体扩散性受气体本身密度的影响。密度比空气越轻,扩散性越大。

3.膨胀性---压缩气体因受热膨胀,使气瓶承受压力增大,可引起气瓶破裂或爆炸。

人们生活中的燃烧气源大致分为液化石油气(Y)、人工煤气(R)、天然气(T)三大类。

煤气是用煤或焦炭等固体原料,经干馏或汽化制得的,其主要成分有一氧化碳、甲烷和氢等。因此,煤气有毒,易于空气形成爆炸性混合物,使用时应引起高度注意。

工业燃料

以天然气代替煤,用于工厂采暖,生产用锅炉以及热电厂燃气轮机锅炉。天然气发电是缓解能源紧缺、降低燃煤发电比例,减少环境污染的有效途径,且从经济效益看,天然气发电的单位装机容量所需投资少,建设工期短,上网电价较低,具有较强的竞争力。

天然气发电,通过处理天然气以后,然后安装天然气发电机组来提供电能,

工艺生产

如烤漆生产线,烟叶烘干、沥青加热保温等

天然气化工工业

天然气是制造氮肥的最佳原料,具有投资少、成本低、污染少等特点。天然气占氮肥生产原料的比重,世界平均为80%左右。

城市燃气事业

特别是居民生活用燃料,包括常规天然气,以及煤层气和页岩气这两种非常规天然气。主要是生产以后并入管道,日常使用天然气。随着人民生活水平的提高及环保意识的增强,大部分城市对天然气的需求明显增加。天然气作为民用燃料的经济效益也大于工业燃料。

压缩天然气汽车

以天然气代替汽车用油,具有价格低、污染少、安全等优点。国际天然气汽车组织的统计显示,天然气汽车的年均增长速度为20.8%,全世界共有大约1270万辆使用天然气的车辆,2020年总量将达7000万辆,其中大部分是压缩天然气汽车。

天然气是优质高效的清洁能源,二氧化碳和氮氧化物的排放仅为煤炭的一半和五分之一左右,二氧化硫的排放几乎为零。天然气作为一种清洁、高效的化石能源,其开发利用越来越受到世界各国的重视。全球范围来看,天然气资源量要远大于石油,发展天然气具有足够的资源保障。

增效天然气

是以天然气为基础气源,经过气剂智能混合设备与天然气增效剂混合后形成的一种新型节能环保工业燃气,燃烧温度能提高至3300℃,可用于工业切割、焊接、打破口,可完全取代乙炔气、丙烷气,可广泛应用于钢厂、钢构、造船行业,可在船舱内安全使用,现市面上的产品有锐锋燃气,锐锋天然气增效剂。

人们的环保意识提高,世界需求干净能源的呼声高涨,各国政府也透过立法程序来传达这种趋势,天然气曾被视为最干净的能源之一,再加上1990年中东的波斯湾危机,加深美国及主要石油消耗国家研发替代能源的决心,因此,在还未发现真正的替代能源前,天然气需求量自然会增加。

中国沉积岩分布面积广,陆相盆地多,形成优越的多种天然气储藏的地质条件。根据1993年全国天然气远景资源量的预测,中国天然气总资源量达38万亿m3,陆上天然气主要分布在中部和西部地区,分别占陆上资源量的43.2%和39.0%。

中国天然气资源的层系分布以新生界第3系和古生界地层为主,在总资源量中,新生界占37.3%,中生界11.1%,上古生界25.5%,下古生界26.1%。天然气资源的成因类型是,高成熟的裂解气和煤层气占主导地位,分别占总资源量的28.3%和20.6%,油田伴生气占18.8%,煤层吸附气占27.6%,生物气占4.7%。

中国天然气探明储量集中在10个大型盆地,依次为:渤海湾、四川、松辽、准噶尔、莺歌海-琼东南、柴达木、吐-哈、塔里木、渤海、鄂尔多斯。中国气田以中小型为主,大多数气田的地质构造比较复杂,勘探开发难度大。1991-1995年间,中国天然气产量从160.73亿m3增加到179.47亿m3,平均年增长速度为2.33%。

中国天然气资源量区域主要分布在中国的中西盆地。同时,中国还具有主要富集于华北地区非常规的煤层气远景资源。在中国960万平方公里的土地和300多万平方公里的管辖海域下,蕴藏着十分丰富的天然气资源。专家预测,资源总量可达40-60多万亿立方米,是一个天然气资源大国。

中国煤炭资源丰富,据统计有6千亿吨,居世界第三位,聚煤盆地发育,现已发现有煤型气聚集的有华北、鄂尔多斯、四川、台湾东海、莺歌海琼东南、以及吐哈等盆地。经研究,鄂尔多斯盆地中部大气区的气多半来自上古生界C-P煤系地层(上古∶下古气源=7∶3或6∶4),可见煤系地层生成天然气的潜力很大。

对中国四川盆地气田的研究(包茨,1988)认为,该盆地的古生代气田是高温甲烷生气期形成的,从三叠系→震旦系,干燥系数由小到大(T:35.5→P:73.1→Z:387.1),重烃由多到少。川南气田中,天然气与热变沥青共生,说明天然气是由石油热变质而成的。

东,就是东海盆地。那里已经喷射出天然气的曙光;

南,就是莺歌海-琼东南及云贵地区。那里也已展现出大气区的雄姿;

西,就是新疆的塔里木盆地、吐哈盆地、准噶尔盆地和青海的柴达木盆地。在那古丝绸之路的西端,石油、天然气会战的鼓声越擂越响。它们不但将成为中国石油战略接替的重要地区,而且天然气之火也已熊熊燃起,燎原之势不可阻挡;

北,就是东北华北的广大地区。在那里有着众多的大油田、老油田,它们在未来高科技的推动下,不但要保持油气稳产,还将有可能攀登新的高峰;

中,就是鄂尔多斯盆地和四川盆地。鄂尔多斯盆地的天然气勘探战场越扩越大,探明储量年年剧增,开发工程正在展开。四川盆地是中国天然气生产的主力地区,又有新的发现,大的突破,天然气的发展将进入一个全新的阶段,再上一个新台阶。

天然气也同原油一样埋藏在地下封闭的地质构造之中,有些和原油储藏在同一层位,有些单独存在。对于和原油储藏在同一层位的天然气,会伴随原油一起开采出来。

对于只有单相气存在的,我们称之为气藏,其开采方法既与原油的开采方法十分相似,又有其特殊的地方。由于天然气密度小,为0.75~0.8千克/立方米,井筒气柱对井底的压力小;天然气粘度小,在地层和管道中的流动阻力也小;又由于膨胀系数大,其弹性能量也大。

因此天然气开采时一般采用自喷方式。这和自喷采油方式基本一样。不过因为气井压力一般较高加上天然气属于易燃易爆气体,对采气井口装置的承压能力和密封性能比对采油井口装置的要求要高的多。

天然气开采也有其自身特点。首先天然气和原油一样与底水或边水常常是一个储藏体系。伴随天然气的开采进程,水体的弹性能量会驱使水沿高渗透带窜入气藏。在这种情况下,由于岩石本身的亲水性和毛细管压力的作用,水的侵入不是有效地驱替气体,而是封闭缝缝洞洞或空隙中未排出的气体,形成死气区。

这部分被圈闭在水侵带的高压气,数量可以高达岩石孔隙体积的30%~50%,从而大大地降低了气藏的最终采收率。其次气井产水后,气流入井底的渗流阻力会增加,气液两相沿油井向上的管流总能量消耗将显著增大。随着水侵影响的日益加剧,气藏的采气速度下降,气井的自喷能力减弱,单井产量迅速递减,直至井底严重积水而停产。治理气藏水患主要从两方面入手,一是排水,一是堵水。堵水就是采用机械卡堵、化学封堵等方法将产气层和产水层分隔开或是在油藏内建立阻水屏障。

办法较多,主要原理是排除井筒积水,专业术语叫排水采气法。小油管排水采气法是利用在一定的产气量下,油管直径越小,则气流速度越大,携液能力越强的原理,如果油管直径选择合理,就不会形成井底积水。这种方法适应于产水初期,地层压力高,产水量较少的气井。

泡沫排水采气方法就是将发泡剂通过油管或套管加入井中,发泡剂溶入井底积水与水作用形成气泡,不但可以降低积液相对密度,还能将地层中产出的水随气流带出地面。这种方法适应于地层压力高,产水量相对较少的气井。

柱塞气举排水采气方法就是在油管内下入一个柱塞。下入时柱塞中的流道处于打开状态,柱塞在其自重的作用下向下运动。当到达油管底部时柱塞中的流道自动关闭,由于作用在柱塞底部的压力大于作用在其顶部的压力,柱塞开始向上运动并将柱塞以上的积水排到地面。当其到达油管顶部时柱塞中的流道又被自动打开,又转为向下运动。通过柱塞的往复运动,就可不断将积液排出。这种方法适用于地层压力比较充足,产水量又较大的气井。

深井泵排水采气方法是利用下入井中的深井泵、抽油杆和地面抽油机,通过油管抽水,套管采气的方式控制井底压力。这种方法适用于地层压力较低的气井,特别是产水气井的中后期开采,但是运行费用相对较高。

在70年代世界能源消耗中,天然气约占 18%~19%。

2006-2010年,我国天然气剩余技术可采储量由3.0万亿立方米增至3.8万亿立方米,增长25.90%;天然气产量从586亿立方米增至968亿立方米,增长65%。

2011年1-10月中国天然气产量达到826亿立方米,同比增长6.60%。尽管储量及产量均出现大幅增长,仍满足不了国内天然气市场消费需求。

天然气供应量的增长不及消费量的增长速度,国内天然气供需不平衡,导致我国天然气进口量不断攀升。2011年1-10月,我国进口天然气约250亿立方米,同比增长近1倍。

十二五”期间,新建天然气管道(含支线)4.4万公里,新增干线管输能力约1500亿立方米/年;新增储气库工作气量约220亿立方米,约占2015年天然气消费总量的9%;城市应急和调峰储气能力达到15亿立方米。

到“十二五”末,初步形成以西气东输、川气东送、陕京线和沿海主干道为大动脉,连接四大进口战略通道、主要生产区、消费区和储气库的全国主干管网,形成多气源供应,多方式调峰,平稳安全的供气格局。 [4]

从2007年到2012年六年间,全国省会城市天然气零售终端均价(剔除车用天然气价格)从2007年的2.22元/立方米上涨至2012年的2.76元/立方米,涨幅仅为2.4%。随着天然气进口量不断增加,进口气价格与国产气价格倒挂的问题也越来越突出,而天然气业务的亏损也越来越严重。

从2010年到2012年三年间,我国天然气年进口均价从每吨322美元上涨至543美元,涨幅达到68.6%。限气后,很多地区将出现较大的供气缺口。由于华北油田和大庆油田主要是负责向内蒙、冀中、陕甘宁等地供气,因此此次限气,北方供气缺口较为明显。

2013年,燃气价格形成市场化的机制后,以形成资源供应保障,天然气价格改革很有可能在逐步推广到其他省市。

从2010到2015年,五年中全国新增燃气电站3000万千瓦,CNG/LNG汽车的陆续上市。全国加气站也在陆续增加中,西气东输沿海液化天然气年接收能力新增5000万吨以上。到2015年建成超过1000个的天然气分布式能源项目和天然气分布式能源示范区,详见前瞻《中国天然气产业供需预测与投资战略分析报告》。

2016年初,中国石油天然气集团公司经济技术研究院发布《2015年国内外油气行业发展报告》称,2015年我国天然气消费增速创10年新低。我国天然气行业正面临资源过剩和基础设施不足两方面的挑战。

报告称,2015年,我国天然气需求增速明显放缓,估计全年表观消费量为1910亿立方米,同比增长3.7%,创近10年新低。国内天然气受压产影响,估计全年产量为1318亿立方米,增长3.5%,增速较上年下降3.1个百分点。但与此同时,天然气进口量达324亿立方米,增长4.7%,对外依存度升至32.7%。

报告预计,2016年,天然气价格下调和环保趋严将拉动天然气需求增速回升。预计天然气需求量将突破2000亿立方米。由于国内储气调峰能力不足,夏季限产、冬季限供的问题仍可能发生。 [5]

预计2030年前,天然气将在一次能源消费中与煤和石油并驾齐驱。到2040年天然气的比例将与石油持平,到2050年,世界能源需求将增加60%,但煤炭和石油消费将处于逐步下降趋势,天然气的高峰期持续时间较长,非常规天然气的出现和大发展必将支撑天然气继续快速发展,最终超过石油,成为世界第一大消费能源。

由中国石油和化学工业联合会2015年1月发布的一份题为《我国天然气发展面临的不确定因素》调究研报告(下简称“报告”)显示,2014年我国天然气表观消费量为1800亿立方米,同比增长7.4%,其中进口天然气580亿立方米,对外依存度达32.2%。

根据国办印发的《能源发展战略行动计划(2014-2020年)》 [6] ,到2020年,我国一次能源消费总量控制在48亿吨标准煤,天然气消费比重10%以上,相当于3600亿立方米;国产常规天然气、页岩气、煤层气总计目标为2450亿立方米。天然气对外依存度由此控制在32%以内。 [7]

中国天然气有良好发展前景,但资源品质总体偏差,未来发展面临巨大挑战,因此应加强理论、技术攻关,常规与非常规气并重,以推动中国天然气快速发展。 [8]

国务院于2018年8月30日发布《国务院关于促进天然气协调稳定发展的若干意见》,自2018年8月30日起实施。

国发〔2018〕31号

各省、自治区、直辖市人民政府,国务院各部委、各直属机构:

天然气是优质高效、绿色清洁的低碳能源。加快天然气开发利用,促进协调稳定发展,是我国推进能源生产和消费革命,构建清洁低碳、安全高效的现代能源体系的重要路径。当前我国天然气产供储销体系还不完备,产业发展不平衡不充分问题较为突出,主要是国内产量增速低于消费增速,进口多元化有待加强,消费结构不尽合理,基础设施存在短板,储气能力严重不足,互联互通程度不够,市场化价格机制未充分形成,应急保障机制不完善,设施建设运营存在安全风险等。为有效解决上述问题,加快天然气产供储销体系建设,促进天然气协调稳定发展,现提出以下意见。

一、总体要求

(一)指导思想。

以习近平新时代中国特色社会主义思想为指导,全面贯彻党的十九大和十九届二中、三中全会精神,统筹推进“五位一体”总体布局和协调推进“四个全面”战略布局,按照党中央、国务院关于深化石油天然气体制改革的决策部署和加快天然气产供储销体系建设的任务要求,落实能源安全战略,着力破解天然气产业发展的深层次矛盾,有效解决天然气发展不平衡不充分问题,确保国内快速增储上产,供需基本平衡,设施运行安全高效,民生用气保障有力,市场机制进一步理顺,实现天然气产业健康有序安全可持续发展。

(二)基本原则。

产供储销,协调发展。促进天然气产业上中下游协调发展,构建供应立足国内、进口来源多元、管网布局完善、储气调峰配套、用气结构合理、运行安全可靠的天然气产供储销体系。立足资源供应实际,统筹谋划推进天然气有序利用。

规划统筹,市场主导。落实天然气发展规划,加快天然气产能和基础设施重大项目建设,加大国内勘探开发力度。深化油气体制机制改革,规范用气行为和市场秩序,坚持以市场化手段为主做好供需平衡。

有序施策,保障民生。充分利用天然气等各种清洁能源,多渠道、多途径推进煤炭替代。“煤改气”要坚持“以气定改”、循序渐进,保障重点区域、领域用气需求。落实各方责任,强化监管问责,确保民生用气稳定供应。

二、加强产供储销体系建设,促进天然气供需动态平衡

(三)加大国内勘探开发力度。深化油气勘查开采管理体制改革,尽快出台相关细则。(自然资源部、国家发展改革委、国家能源局按职责分工负责)各油气企业全面增加国内勘探开发资金和工作量投入,确保完成国家规划部署的各项目标任务,力争到2020年底前国内天然气产量达到2000亿立方米以上。(各油气企业负责,国家发展改革委、国务院国资委、自然资源部、国家能源局加强督导检查)严格执行油气勘查区块退出机制,全面实行区块竞争性出让,鼓励以市场化方式转让矿业权,完善矿业权转让、储量及价值评估等规则。建立完善油气地质资料公开和共享机制。(自然资源部、国家发展改革委、国务院国资委、国家能源局按职责分工负责)建立已探明未动用储量加快动用机制,综合利用区块企业内部流转、参照产品分成等模式与各类主体合资合作开发、矿业权企业间流转和竞争性出让等手段,多措并举盘活储量存量。(国家发展改革委、自然资源部、国务院国资委、国家能源局按职责分工负责)统筹国家战略和经济效益,强化国有油气企业能源安全保障考核,引导企业加大勘探开发投入,确保增储上产见实效。(国务院国资委、国家发展改革委、国家能源局按职责分工负责)统筹平衡天然气勘探开发与生态环境保护,积极有序推进油气资源合理开发利用,服务国家能源战略、保障天然气供应安全。(生态环境部、自然资源部、国家发展改革委、国家能源局按职责分工负责)

(四)健全天然气多元化海外供应体系。加快推进进口国别(地区)、运输方式、进口通道、合同模式以及参与主体多元化。天然气进口贸易坚持长约、现货两手抓,在保障长期供应稳定的同时,充分发挥现货资源的市场调节作用。加强与重点天然气出口国多双边合作,加快推进国际合作重点项目。在坚持市场化原则的前提下,在应急保供等特殊时段加强对天然气进口的统筹协调,规范市场主体竞争行为。(各油气企业落实,国家发展改革委、外交部、商务部、国家能源局指导协调)

(五)构建多层次储备体系。建立以地下储气库和沿海液化天然气(LNG)接收站为主、重点地区内陆集约规模化LNG储罐为辅、管网互联互通为支撑的多层次储气系统。供气企业到2020年形成不低于其年合同销售量10%的储气能力。(各供气企业负责,国家发展改革委、国家能源局指导并督促落实)城镇燃气企业到2020年形成不低于其年用气量5%的储气能力,各地区到2020年形成不低于保障本行政区域3天日均消费量的储气能力。统筹推进地方政府和城镇燃气企业储气能力建设,实现储气设施集约化规模化运营,避免“遍地开花”,鼓励各类投资主体合资合作建设储气设施。(各省级人民政府负责,国家发展改革委、住房城乡建设部、国家能源局指导)作为临时性过渡措施,储气能力暂时不达标的企业和地区,要通过签订可中断供气合同等方式弥补调峰能力。(国家发展改革委、住房城乡建设部、国家能源局、各省级人民政府按职责分工负责)加快放开储气地质构造的使用权,鼓励符合条件的市场主体利用枯竭油气藏、盐穴等建设地下储气库。配套完善油气、盐业等矿业权转让、废弃核销机制以及已开发油气田、盐矿作价评估机制。(国家发展改革委、自然资源部、国家能源局按职责分工负责)按照新的储气能力要求,修订《城镇燃气设计规范》。加强储气能力建设情况跟踪,对推进不力、违法失信的地方政府和企业等实施约谈问责或联合惩戒。(国家发展改革委、住房城乡建设部、国家能源局、各省级人民政府按职责分工负责)

(六)强化天然气基础设施建设与互联互通。加快天然气管道、LNG接收站等项目建设,集中开展管道互联互通重大工程,加快推动纳入环渤海地区LNG储运体系实施方案的各项目落地实施。(相关企业负责,国家发展改革委、国家能源局等有关部门与地方各级人民政府加强协调支持)注重与国土空间规划相衔接,合理安排各类基础设施建设规模、结构、布局和时序,加强项目用地用海保障。(自然资源部负责)抓紧出台油气管网体制改革方案,推动天然气管网等基础设施向第三方市场主体公平开放。深化“放管服”改革,简化优化前置要件审批,积极推行并联审批等方式,缩短项目建设手续办理和审批周期。(国家发展改革委、国家能源局等有关部门与地方各级人民政府按职责分工负责)根据市场发展需求,积极发展沿海、内河小型LNG船舶运输,出台LNG罐箱多式联运相关法规政策和标准规范。(交通运输部、国家铁路局负责)

三、深化天然气领域改革,建立健全协调稳定发展体制机制

(七)建立天然气供需预测预警机制。加强政府和企业层面对国际天然气市场的监测和预判。统筹考虑经济发展、城镇化进程、能源结构调整、价格变化等多种因素,精准预测天然气需求,尤其要做好冬季取暖期民用和非民用天然气需求预测。根据预测结果,组织开展天然气生产和供应能力科学评估,努力实现供需动态平衡。建立天然气供需预警机制,及时对可能出现的国内供需问题及进口风险作出预测预警,健全信息通报和反馈机制,确保供需信息有效对接。(国家发展改革委、外交部、生态环境部、住房城乡建设部、国家能源局、中国气象局指导地方各级人民政府和相关企业落实)

(八)建立天然气发展综合协调机制。全面实行天然气购销合同制度,鼓励签订中长期合同,积极推动跨年度合同签订。按照宜电则电、宜气则气、宜煤则煤、宜油则油的原则,充分利用各种清洁能源推进大气污染防治和北方地区冬季清洁取暖。“煤改气”要坚持“以气定改”、循序渐进,突出对京津冀及周边地区和汾渭平原等重点区域用气需求的保障。(各省级人民政府和供气企业负责,国家发展改革委、生态环境部、住房城乡建设部、国家能源局指导并督促落实)建立完善天然气领域信用体系,对合同违约及保供不力的地方政府和企业,按相关规定纳入失信名单,对严重违法失信行为实施联合惩戒。(国家发展改革委、国家能源局负责)研究将中央财政对非常规天然气补贴政策延续到“十四五”时期,将致密气纳入补贴范围。对重点地区应急储气设施建设给予中央预算内投资补助支持,研究中央财政对超过储备目标的气量给予补贴等支持政策,在准确计量认定的基础上研究对垫底气的支持政策。研究根据LNG接收站实际接收量实行增值税按比例返还的政策。(财政部、国家发展改革委、国家能源局按职责分工负责)将天然气产供储销体系重大工程建设纳入相关专项督查。(国家发展改革委、国家能源局负责)

(九)建立健全天然气需求侧管理和调峰机制。新增天然气量优先用于城镇居民生活用气和大气污染严重地区冬季取暖散煤替代。研究出台调峰用户管理办法,建立健全分级调峰用户制度,按照确保安全、提前告知、充分沟通、稳妥推进的原则启动实施分级调峰。鼓励用户自主选择资源方、供气路径及形式,大力发展区域及用户双气源、多气源供应。鼓励发展可中断大工业用户和可替代能源用户,通过季节性差价等市场化手段,积极引导用户主动参与调峰,充分发挥终端用户调峰能力。(各省级人民政府负责,国家发展改革委、生态环境部、住房城乡建设部、国家能源局加强指导支持)

(十)建立完善天然气供应保障应急体系。充分发挥煤电油气运保障工作部际协调机制作用,构建上下联动、部门协调的天然气供应保障应急体系。(煤电油气运保障工作部际协调机制成员单位负责)落实地方各级人民政府的民生用气保供主体责任,严格按照“压非保民”原则做好分级保供预案和用户调峰方案。(地方各级人民政府负责)建立天然气保供成本合理分摊机制,相应应急支出由保供不力的相关责任方全额承担,参与保供的第三方企业可获得合理收益。(国家发展改革委、地方各级人民政府按职责分工负责)

(十一)理顺天然气价格机制。落实好理顺居民用气门站价格方案,合理安排居民用气销售价格,各地区要采取措施对城乡低收入群体给予适当补贴。(各省级人民政府负责,国家发展改革委指导并督促落实)中央财政利用现有资金渠道加大支持力度,保障气价改革平稳实施。(财政部负责)加快建立上下游天然气价格联动机制,完善监管规则、调价公示和信息公开制度,建立气源采购成本约束和激励机制。推行季节性差价、可中断气价等差别化价格政策,促进削峰填谷,引导企业增加储气和淡旺季调节能力。加强天然气输配环节价格监管,切实降低过高的省级区域内输配价格。加强天然气价格监督检查,严格查处价格违法违规行为。(各省级人民政府负责,国家发展改革委、市场监管总局指导并督促落实)推动城镇燃气企业整合重组,鼓励有资质的市场主体开展城镇燃气施工等业务,降低供用气领域服务性收费水平。(住房城乡建设部、国家发展改革委负责)

(十二)强化天然气全产业链安全运行机制。各类供气企业、管道运营企业、城镇燃气企业等要切实落实安全生产主体责任,建立健全安全生产工作机制和管理制度,严把工程质量关,加强设施维护和巡查,严格管控各类风险,及时排查消除安全隐患。地方各级人民政府要切实落实属地管理责任,严格日常监督检查和管理,加强重大风险安全管控,指导督促企业落实安全生产主体责任。地方各级人民政府和相关企业要建立健全应急处置工作机制,完善应急预案。制定完善天然气产业链各环节质量管理和安全相关法律法规、标准规范及技术要求。针对农村“煤改气”等重点领域、冬季采暖期等特殊时段,国务院各有关部门要视情组织专项督查,指导督促地方和相关企业做好安全生产工作。(相关企业承担主体责任,地方各级人民政府承担属地管理责任,国家发展改革委、自然资源部、生态环境部、住房城乡建设部、应急部、市场监管总局、国家能源局按职责分工加强指导和监督) [9]

2018年9月10日,国务院《关于促进天然气协调稳定发展的若干意见》(以下简称《意见》)。提出加大国内勘探开发力度。力争到2020年底前国内天然气产量达到2000亿立方米以上。

数据显示,2017年中国天然气产量增长超100亿立方米,达1480.3亿立方米,同比增长8.2%。而今年1-7月我国天然气表观消费量累计1575.6亿立方米,同比增长16.47%;中国天然气自产量904.9亿立方米,同比增长5.5%,较2017年1-6月增速同比降低3.3个百分点。

《意见》提出,要加强产供储销体系建设,促进天然气供需动态平衡。一是加大国内勘探开发力度。严格执行油气勘查区块退出机制,全面实行区块竞争性出让,鼓励矿业权市场化转让,加快动用已探明未动用储量,强化国有油气企业能源安全保障考核。二是健全天然气多元化海外供应体系。加快推进进口国别(地区)、运输方式、进口通道、合同模式以及参与主体多元化。三是构建多层次储备体系。统筹推进地方政府和城镇燃气企业储气能力建设,实现储气设施集约化规模化运营,避免“遍地开花”,鼓励各类投资主体合资合作建设储气设施。四是强化天然气基础设施建设与互联互通。抓紧出台油气管网体制改革方案,推动基础设施向第三方市场主体公平开放;深化“放管服”改革,缩短项目建设手续办理和审批周期。

《意见》强调,要深化天然气领域改革,建立健全协调稳定发展体制机制。一是建立天然气供需预测预警机制。二是建立天然气发展综合协调机制。“煤改气”坚持“以气定改”、循序渐进,突出对京津冀及周边地区和汾渭平原等重点区域用气需求的保障。三是建立健全天然气需求侧管理和调峰机制。四是建立完善天然气供应保障应急体系。落实地方各级人民政府的民生用气保供主体责任,做好分级保供预案和用户调峰方案。五是理顺天然气价格机制。确保居民用气门站价格改革方案平稳实施,加快建立上下游天然气价格联动机制,推行季节性差价、可中断气价等差别化价格政策。六是强化天然气全产业链安全运行机制。 [10]

民用天然气的含硫标准上限为:一类气小于等于100mg/立方米,二类气小于等于200mg/立方米,三类气小于等于460mg/立方米。所以1立方米天然气燃烧后释放二氧化硫最多为(460mg/32)*64=920mg。

GB/T 21446-2008 用标准孔板流量计测量天然气流量GB/T 18975.2-2008 工业自动化系统与集成流程工厂(包括石油和天然气生产设施)生命周期数据集成第2部分:数据模型GB/T 11060.2-2008 天然气含硫化合物的测定第2部分:用亚甲蓝法测定硫化氢含量

GB/T 22634-2008 天然气水含量与水露点之间的换算

GB/T 16781.1-2008 天然气汞含量的测定第1部分:碘化学吸附取样法

GB/T 22724-2008 液化天然气设备与安装陆上装置设计

GB/T 19205-2008 天然气标准参比条件

GB/T 22723-2008 天然气能量的测定

GB/T 18437.1-2009 燃气汽车改装技术要求第1部分:压缩天然气汽车

GB/T 23335-2009 天然气汽车定型试验规程

GB 24162-2009 汽车用压缩天然气金属内胆纤维环缠绕气瓶定期检验与评定GB 17926-2009 车用压缩天然气瓶阀

GB 24163-2009 站用压缩天然气钢瓶定期检验与评定

GB 24160-2009 车用压缩天然气钢质内胆环向缠绕气瓶

GB/T 24964-2010 冷冻轻烃流体液化天然气船上贸易交接程序GB/T 24963-2010 液化天然气设备与安装船岸界面

GB/T 11060.4-2010 天然气含硫化合物的测定第4部分:用氧化微库仑法测定总硫含量

GB/T 11060.5-2010 天然气含硫化合物的测定第5部分:用氢解-速率计比色法测定总硫含量

GB/T 11060.1-2010 天然气含硫化合物的测定第1部分:用碘量法测定硫化氢含量

GB/T 11060.3-2010 天然气含硫化合物的测定第3部分:用乙酸铅反应速率双光路检测法测定硫化氢含量

GB/T 16781.2-2010 天然气汞含量的测定第2部分:金-铂合金汞齐化取样法

GB/T 14099.5-2010 燃气轮机采购第5部分:在石油和天然气工业中的应用GB/T 25360-2010 汽车加气站用往复活塞天然气压缩机

GB/T 25986-2010 汽车用液化天然气加注装置GB/T 26780-2011 压缩天然气汽车燃料系统碰撞安全要求GB/T 26978.1-2011 现场组装立式圆筒平底钢质液化天然气储罐的设计与建造第1部分:总则

GB/T 26978.2-2011 现场组装立式圆筒平底钢质液化天然气储罐的设计与建造第2部分:金属构件

表1 天然气计量常用流量仪表

序号

用途

差压式

容积式

涡轮

流量计

超声

流量计

旋涡

流量计

利里奥利质量流量计

靶式

流量计

孔板

流量计

临界流文丘里喷嘴流量计

其它

膜式

流量计

腰轮

流量计

1

管网输道干线和支线

2

城市输送和分配


相关文章推荐:
大气圈 | 水圈 | 岩石圈 | 油田气 | 泥火山气 | 煤层气 | 生物生成气 | 狭义 | | 石油地质学 | 岩层 | 炭黑 | 液化石油气 | 丙烷 | 丁烷 | 低分子烃 | 混合气体 | 比重 | 烷烃 | 甲烷 | 乙烷 | 丙烷 | 丁烷 | 硫化氢 | | | 四氢噻吩 | | 爆炸极限 | 标准状况 | 戊烷 | | 硫化氢 | 液化气 | 热值 | 大卡 | 方程式 | 完全燃烧 | CO2 | 甲烷 | 氧气 | 二氧化碳 | 水蒸气 | 不完全燃烧 | CH4 | O2 | CO | H2O | 相态 | 游离态 | 溶解态 | 水合物 | 伴生气 | 油田气 | 挥发性 | 纯气 | 凝析气 | 气态 | 压力 | 气相 | 凝析油 | 气田 | 油田气 | 煤层气 | 原油 | 油型气 | | 氮氧化合物 | 温室效应 | 人工煤气 | 灶具 | 生活质量 | 纯度 | 氧气 | 有机质 | 成岩作用 | 有机质 | 还原环境 | 三角洲 | 泥岩 | 产甲烷菌 | 金属硫化物 | 甲烷菌 | 热降解 | 湿气 | 裂解气 | 液态烃 | 石油裂解 | 石油裂解气 | 煤系地层 | 煤田 | 瓦斯 | 瓦斯突出 | 北海 | 哈尔 | 成煤作用 | 泥炭化 | 沼泽 | 沉降 | 煤化作用 | 微生物酶 | 褐煤 | 长焰煤 | 气煤 | 肥煤 | 焦煤 | 瘦煤 | 贫煤 | 烟煤 | 挥发分 | 煤化作用 | 烟煤 | 无烟煤 | 煤化跃变 | 分离提纯 | 低阶煤 | 类脂组 | 镜质组 | 岩浆活动 | 非生物 | 同位素比值 | 围岩 | 放射性 | 朱铭 | 地幔 | 火山 | 大洋板块 | 经济意义 | 三水 | 岩浆 | 碳酸盐岩 | 高岭石 | 氧化作用 | 硝酸盐还原 | 氮气 | 辉绿岩 | 铁陨石 | 同位素 | 沉积盆地 | 热力学 | 烃类 | 俄罗斯 | 伊朗 | 卡塔尔 | 沙特阿拉伯 | 阿联酋 | 美国 | 阿尔及利亚 | 挪威 | 委内瑞拉 | 尼日利亚 | 生物标志化合物 | 油田 | 液化天然气 | 新兴工业 | 常温 | 压缩天然气 | 能量密度 | 液化天然气 | 发电厂 | 炼厂气 | 液化石油气 | 煤油 | 乙烯 | 乙烷 | 丙烷 | 丁烷 | 液化气 | 烯烃 | 可燃气体 | 液化设备 | 压缩天然气 | 焦炭 | 爆炸性混合物 | 燃气轮机 | 环境污染 | 天然气发电机组 | 天然气化工 | 煤层气 | 天然气汽车 | 波斯湾 | 替代能源 | 沉积岩 | 资源量 | 新生界 | 中生界 | 煤层 | 吸附气 | 渤海 | 准噶尔 | 柴达木 | 塔里木 | 鄂尔多斯 | 煤盆地 | 鄂尔多斯 | 莺歌海 | 鄂尔多斯盆地 | 古生界 | 四川盆地 | 古生代 | 东海盆地 | 塔里木盆地 | 准噶尔盆地 | 天然气密度 | 气柱 | 膨胀系数 | 天然气开采 | 自喷采油 | 气井 | 井口装置 | 油井 | 毛细管压力 | 圈闭 | 渗流阻力 | 管流 | 能量消耗 | 堵水 | 油藏 | 排水采气 | 油管 | 地层压力 | 泡沫排水采气 | 发泡剂 | CNG |
相关词汇词典